diff --git a/工具/批量添加题库字段数据.ipynb b/工具/批量添加题库字段数据.ipynb index 8aa037ae..1d548e07 100644 --- a/工具/批量添加题库字段数据.ipynb +++ b/工具/批量添加题库字段数据.ipynb @@ -2,277 +2,364 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.941\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.529\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.529\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.941\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.794\t1.000\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.676\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t1.000\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t1.000\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.912\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.912\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t1.000\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.941\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t1.000\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.882\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.941\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t1.000\t0.941\t1.000\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.941\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.765\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.971\t0.912\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.912\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.765\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三10班\t0.853\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.864\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.591\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.682\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.682\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.636\t1.000\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.773\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.773\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.727\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.909\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.727\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.864\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.636\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.864\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.909\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.727\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.818\t0.727\t0.864\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.682\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.500\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.909\t0.864\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.682\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.091\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三11班\t0.682\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.809\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.381\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.905\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.809\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.667\t0.952\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.429\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t1.000\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.905\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.952\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.952\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t1.000\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.238\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.857\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.809\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.714\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.952\t0.905\t1.000\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.762\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.619\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.667\t0.667\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.762\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.619\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三12班\t0.714\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.903\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.742\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.774\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.839\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.839\t0.935\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.581\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.613\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t1.000\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.968\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.935\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t1.000\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.806\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.710\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.903\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.903\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.935\t0.871\t1.000\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.774\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.903\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t1.000\t0.968\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.903\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.774\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三01班\t0.839\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.700\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.733\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.800\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.833\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.933\t0.967\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.533\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.700\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.833\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.900\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t1.000\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.967\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.733\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.933\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.833\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.967\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.933\t0.933\t1.000\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.467\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.967\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.800\t0.833\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.800\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.633\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三02班\t0.900\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.964\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.679\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.679\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.786\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.893\t0.857\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.500\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.679\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.893\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.964\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.964\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.893\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.714\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.929\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.893\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.964\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.893\t0.964\t1.000\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.571\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.714\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.714\t0.607\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.536\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.536\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三03班\t0.821\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.893\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.643\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.571\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.893\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.964\t0.893\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.607\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.643\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.929\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.964\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.821\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t1.000\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.607\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.857\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.821\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.964\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.964\t0.750\t0.857\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.786\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.679\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.893\t0.929\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.464\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.607\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三04班\t0.821\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.886\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.514\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.743\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.714\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.829\t0.857\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.429\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.629\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.771\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t1.000\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.886\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.971\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.514\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.943\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.886\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.971\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.800\t0.943\t0.943\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.571\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.800\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.886\t0.714\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.771\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.600\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三05班\t0.714\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.703\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.703\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.568\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.838\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.919\t0.973\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.703\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.838\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.919\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.973\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t1.000\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.892\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.757\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.946\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.838\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t1.000\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.865\t0.865\t0.973\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.757\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.838\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.892\t0.919\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.784\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.622\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三06班\t0.865\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.935\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.516\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.581\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.774\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.742\t0.903\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.645\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.774\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.806\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.968\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.774\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.968\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.161\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.839\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.935\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.935\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.742\t0.516\t0.774\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.806\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.581\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.968\t0.871\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.290\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.387\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三07班\t0.774\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.677\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.935\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.871\t0.968\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.613\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.774\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.839\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.806\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.935\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.903\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t1.000\t0.839\t0.903\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.613\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.710\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.806\t0.774\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.581\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.419\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三08班\t0.677\n", - "题号: 000960 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.833\n", - "题号: 002162 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.533\n", - "题号: 002168 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.700\n", - "题号: 003362 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.900\n", - "题号: 010602 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.867\t1.000\n", - "题号: 000248 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.667\n", - "题号: 009784 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.967\n", - "题号: 008831 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.900\n", - "题号: 000258 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.933\n", - "题号: 000263 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.833\n", - "题号: 009791 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.867\n", - "题号: 002141 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.433\n", - "题号: 002136 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.900\n", - "题号: 004538 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.767\n", - "题号: 002187 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.867\n", - "题号: 010622 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.900\t0.833\t0.933\n", - "题号: 008760 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.400\n", - "题号: 002213 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.733\n", - "题号: 009801 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.667\t0.600\n", - "题号: 009803 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.633\n", - "题号: 004213 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.367\n", - "题号: 008805 , 字段: usages 中已添加数据: 20221125\t2023届高三09班\t0.700\n" + "题号: 000333 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000340 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000350 , 字段: objs 中已添加数据: KNONE\n", + "题号: 000359 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 000373 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000385 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000393 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000398 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000410 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000418 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000435 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000439 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000455 , 字段: objs 中已有该数据: KNONE\n", + "题号: 000462 , 字段: objs 中已添加数据: KNONE\n", + "题号: 000470 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000483 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000502 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000521 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000532 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000539 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000563 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000568 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000580 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000593 , 字段: objs 中已添加数据: KNONE\n", + "题号: 000600 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 000620 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000632 , 字段: objs 中已添加数据: KNONE\n", + "题号: 000640 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000658 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000694 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000722 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000735 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000737 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000753 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000774 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000800 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000811 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 000823 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000828 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000837 , 字段: objs 中已添加数据: K0819004X\n", + "题号: 000849 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000866 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000873 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000885 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000906 , 字段: objs 中已添加数据: KNONE\n", + "题号: 000914 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000929 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 000951 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002611 , 字段: objs 中已添加数据: KNONE\n", + "题号: 002612 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002613 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002614 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002615 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002616 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002617 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002618 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002619 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 002620 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002621 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 002621 , 字段: objs 中已添加数据: K0819004X\n", + "题号: 002622 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002623 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002624 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 002625 , 字段: objs 中已添加数据: KNONE\n", + "题号: 002626 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 002627 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 002628 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 002629 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 002630 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002630 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 002631 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 002633 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002634 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 002634 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 002635 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 002636 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 002637 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 002639 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003572 , 字段: objs 中已添加数据: KNONE\n", + "题号: 003573 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003578 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003578 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 003583 , 字段: objs 中已添加数据: KNONE\n", + "题号: 003584 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003594 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003634 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003654 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003735 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003750 , 字段: objs 中已添加数据: KNONE\n", + "题号: 003764 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003811 , 字段: objs 中已有该数据: K0820001X\n", + "题号: 003840 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003840 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003840 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 003851 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 003867 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 003883 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 003899 , 字段: objs 中已添加数据: KNONE\n", + "题号: 003942 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003962 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003976 , 字段: objs 中已添加数据: KNONE\n", + "题号: 003991 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 003997 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 004019 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 004019 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 004020 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 004021 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 004027 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 004027 , 字段: objs 中已有该数据: K0820001X\n", + "题号: 004028 , 字段: objs 中已有该数据: K0819006X\n", + "题号: 004030 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 004104 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004127 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004148 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004170 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004192 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 004211 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 004231 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004250 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004298 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004342 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 004394 , 字段: objs 中已添加数据: KNONE\n", + "题号: 004430 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004450 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004475 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004517 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004536 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004558 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004625 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 004663 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004678 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 004678 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004686 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004711 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 004711 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004727 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 004747 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007526 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007527 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007528 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007529 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007530 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007531 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007532 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007533 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007534 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007535 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007536 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007537 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007538 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007539 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007540 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007541 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007542 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007543 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007544 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007545 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007546 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007547 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007548 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 007549 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007549 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007550 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007551 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 007552 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007553 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007554 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007555 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007556 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007557 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007558 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 007559 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007560 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007561 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007562 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007563 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007564 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007565 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007566 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007567 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007568 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007569 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007570 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007571 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007572 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007573 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007574 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007575 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007576 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007577 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007578 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007580 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007581 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007582 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007583 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007584 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007585 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007586 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007587 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007588 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007589 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007590 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007591 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007592 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007593 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007594 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007595 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007596 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007597 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007598 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007599 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007600 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007601 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007602 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007603 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007604 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007605 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007606 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007607 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007608 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007608 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 007609 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007610 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007611 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007612 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007613 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007614 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007615 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007616 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007617 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007618 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 007619 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007620 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007621 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007622 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 007623 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007625 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007626 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007627 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007628 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007629 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007630 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007631 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007632 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007633 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007633 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007636 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007637 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007638 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007639 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007640 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007641 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007642 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007643 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007644 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007645 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 007646 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007647 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007648 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007649 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007650 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007651 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007652 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007653 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007654 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007655 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007656 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007657 , 字段: objs 中已添加数据: KNONE\n", + "题号: 007658 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007659 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007660 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 007661 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007662 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007663 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007664 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 007676 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007677 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007678 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 007679 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009303 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009304 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009305 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009306 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009307 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009308 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 009309 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009310 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009311 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009312 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009313 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 009314 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009315 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009316 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009317 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009318 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 009319 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 009320 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009325 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009331 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009334 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009339 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 009343 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009344 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009407 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009408 , 字段: objs 中已添加数据: K0820002X\n", + "题号: 009411 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009419 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009421 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009422 , 字段: objs 中已添加数据: KNONE\n", + "题号: 009945 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 009946 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 009947 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 009948 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 009990 , 字段: objs 中已添加数据: K0819006X\n", + "题号: 010875 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 010875 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 010876 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 010877 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 010878 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 010879 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 010880 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 010881 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 010882 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 010883 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 010990 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011030 , 字段: objs 中已添加数据: KNONE\n", + "题号: 011054 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011137 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011226 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011269 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011293 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011308 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011340 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011347 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011369 , 字段: objs 中已添加数据: K0819002X\n", + "题号: 011396 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011415 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011442 , 字段: objs 中已添加数据: K0820001X\n", + "题号: 011459 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011498 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011528 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011628 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011651 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011703 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 011723 , 字段: objs 中已添加数据: KNONE\n", + "题号: 011993 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 012011 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 012026 , 字段: objs 中已添加数据: K0819005X\n", + "题号: 012026 , 字段: objs 中已添加数据: K0820003X\n", + "题号: 030022 , 字段: objs 中已有该数据: K0819005X\n", + "题号: 030071 , 字段: objs 中已添加数据: K0820001X\n" ] } ], @@ -370,7 +457,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, @@ -384,12 +471,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" + "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, diff --git a/工具/批量题号选题pdf生成.ipynb b/工具/批量题号选题pdf生成.ipynb index 733f5467..c980217e 100644 --- a/工具/批量题号选题pdf生成.ipynb +++ b/工具/批量题号选题pdf生成.ipynb @@ -2,16 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "开始编译教师版本pdf文件: 临时文件/抛物线预选_教师用_20221119.tex\n", + "开始编译教师版本pdf文件: 临时文件/二项式定理预选_教师用_20221129.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/抛物线预选_学生用_20221119.tex\n", + "开始编译学生版本pdf文件: 临时文件/二项式定理预选_学生用_20221129.tex\n", "0\n" ] } @@ -26,18 +26,13 @@ "\"\"\"---设置题目列表---\"\"\"\n", "#字典字段为文件名, 之后为内容的题号\n", "problems_dict = {\n", - "\"K0713001X\":\"002334,008886,008894,010671\",\n", - "\"K0719001X\":\"004654\",\n", - "\"K0719002X\":\"002393,009099\",\n", - "\"K0719003X\":\"000369,000467,000669,000728,000806,000833,000878,000909,000957,000968,002395,002397,002405,002406,002407,003448,003639,003837,003930,003945,004197,004221,004495,004514,004524,004550,004570,008921,008924,008926,008928,008935,008960,009077,009105,009837,009840,010682\",\n", - "\"K0719004X\":\"000337,000707,000739,000783,000864,002408,002409,002410,002439,003437,003449,008920,008927,008953,008956,009081,009836,010684\",\n", - "\"K0719005X\":\"000290,002440,002441,002450,004078,010703\",\n", - "\"K0719006X\":\"000275,002402,002421,002689,003440,003599,003781,008923,010683\",\n", - "\"K0720002X\":\"002426\",\n", - "\"K0720003X\":\"000282,000464,002398,002400,002401,002403,002404,002411,002412,002413,002417,002418,002419,002420,002422,002423,002424,002425,002427,002429,002430,002434,002436,002437,002445,002690,003438,003439,003441,003443,003444,003446,003447,003450,003451,004141,004225,004351,004372,004626,004639,004713,004764,008922,008925,008930,008931,008932,008933,008934,008936,008954,008955,008968,009098,009106,009110,009838,009839,010685,010688,010689\",\n", - "\"K0720004X\":\"000804,003795,004065,008929,008937,008957,010686\",\n", - "\"K0720005X\":\"002438\"\n", - "\n", + "\"K0819002X\":\"000811,002619,003997,004192,007528,007541,007544,007545,007559,007563,007574,007575,007576,007582,007604,007663,007664,010877,010883,011369\",\n", + "\"K0819004X\":\"000837,002621\",\n", + "\"K0819005X\":\"000333,000340,000373,000385,000393,000398,000410,000418,000435,000439,000470,000483,000502,000521,000532,000539,000563,000568,000580,000600,000620,000640,000658,000694,000722,000735,000737,000753,000774,000800,000823,000828,000849,000866,000873,000885,000914,000929,000951,002612,002613,002614,002615,002616,002617,002618,002620,002622,002623,002633,003584,003594,003634,003654,003735,003759,003764,003867,004021,004030,004104,004127,004148,004170,004231,004250,004298,004430,004450,004475,004517,004536,004558,004663,004686,004727,004747,007527,007529,007530,007531,007532,007542,007543,007546,007547,007549,007552,007553,007554,007555,007556,007557,007560,007561,007562,007577,007578,007581,007586,007587,007588,007589,007590,007591,007592,007593,007594,007595,007596,007597,007598,007599,007601,007602,007603,007605,007606,007607,007623,007631,007659,007660,007679,009303,009304,009305,009306,009311,009315,009316,009320,009325,009334,009407,009411,009421,009945,010875,010876,010879,010880,010882,010990,011054,011137,011226,011269,011293,011308,011340,011347,011396,011415,011459,011498,011528,011628,011651,011703,011993,012011,030022\",\n", + "\"K0819006X\":\"002635,002637,004028,007539,007540,007585,007628,007638,007639,007640,007641,007642,007643,007644,007645,009308,009318,009319,009946,009990\",\n", + "\"K0820001X\":\"002626,002627,002628,002631,002634,002639,003573,003811,003942,003962,003991,004020,004027,004211,007533,007534,007535,007536,007537,007538,007550,007564,007565,007566,007567,007568,007569,007570,007571,007572,007573,007580,007584,007611,007612,007613,007614,007615,007617,007620,007621,007625,007626,007627,007629,007630,007633,007636,007637,007646,007647,007648,007651,007658,007661,007662,007676,007677,007678,009310,009312,009314,009343,009419,009947,011442,030071\",\n", + "\"K0820002X\":\"000359,003840,004019,004711,007618,007622,009339,009408\",\n", + "\"K0820003X\":\"002624,002629,002630,002636,003578,003851,003883,004342,004625,004678,007548,007551,007558,007608,009313,009948,010878,010881,012026\",\n", "}\n", "\n", "\"\"\"---设置题目列表结束---\"\"\"\n", @@ -45,7 +40,7 @@ "\"\"\"---设置文件保存路径---\"\"\"\n", "#目录和文件的分隔务必用/\n", "directory = \"临时文件/\"\n", - "filename = \"抛物线预选\"\n", + "filename = \"二项式定理预选\"\n", "\"\"\"---设置文件名结束---\"\"\"\n", "if directory[-1] != \"/\":\n", " directory += \"/\"\n", diff --git a/工具/文本文件/metadata.txt b/工具/文本文件/metadata.txt index a7a751f9..bf4a835a 100644 --- a/工具/文本文件/metadata.txt +++ b/工具/文本文件/metadata.txt @@ -1,794 +1,1362 @@ -usages +objs -000960 -20221125 2023届高三10班 0.941 +333 +K0819005X -002162 -20221125 2023届高三10班 0.529 -002168 -20221125 2023届高三10班 0.529 +340 +K0819005X -003362 -20221125 2023届高三10班 0.941 -010602 -20221125 2023届高三10班 0.794 1.000 +350 +KNONE -000248 -20221125 2023届高三10班 0.676 -009784 -20221125 2023届高三10班 1.000 +359 +K0820002X -008831 -20221125 2023届高三10班 1.000 -000258 -20221125 2023届高三10班 0.912 +373 +K0819005X -000263 -20221125 2023届高三10班 0.912 -009791 -20221125 2023届高三10班 1.000 +385 +K0819005X -002141 -20221125 2023届高三10班 0.941 -002136 -20221125 2023届高三10班 1.000 +393 +K0819005X -004538 -20221125 2023届高三10班 0.882 -002187 -20221125 2023届高三10班 0.941 +398 +K0819005X -010622 -20221125 2023届高三10班 1.000 0.941 1.000 -008760 -20221125 2023届高三10班 0.941 +410 +K0819005X -002213 -20221125 2023届高三10班 0.765 -009801 -20221125 2023届高三10班 0.971 0.912 +418 +K0819005X -009803 -20221125 2023届高三10班 0.912 -004213 -20221125 2023届高三10班 0.765 +435 +K0819005X -008805 -20221125 2023届高三10班 0.853 -000960 -20221125 2023届高三11班 0.864 +439 +K0819005X -002162 -20221125 2023届高三11班 0.591 -002168 -20221125 2023届高三11班 0.682 +455 +KNONE -003362 -20221125 2023届高三11班 0.682 -010602 -20221125 2023届高三11班 0.636 1.000 +462 +KNONE -000248 -20221125 2023届高三11班 0.773 -009784 -20221125 2023届高三11班 0.773 +470 +K0819005X -008831 -20221125 2023届高三11班 0.727 -000258 -20221125 2023届高三11班 0.909 +483 +K0819005X -000263 -20221125 2023届高三11班 0.727 -009791 -20221125 2023届高三11班 0.864 +502 +K0819005X -002141 -20221125 2023届高三11班 0.636 -002136 -20221125 2023届高三11班 0.864 +521 +K0819005X -004538 -20221125 2023届高三11班 0.909 -002187 -20221125 2023届高三11班 0.727 +532 +K0819005X -010622 -20221125 2023届高三11班 0.818 0.727 0.864 -008760 -20221125 2023届高三11班 0.682 +539 +K0819005X -002213 -20221125 2023届高三11班 0.500 -009801 -20221125 2023届高三11班 0.909 0.864 +563 +K0819005X -009803 -20221125 2023届高三11班 0.682 -004213 -20221125 2023届高三11班 0.091 +568 +K0819005X -008805 -20221125 2023届高三11班 0.682 -000960 -20221125 2023届高三12班 0.809 +580 +K0819005X -002162 -20221125 2023届高三12班 0.381 -002168 -20221125 2023届高三12班 0.905 +593 +KNONE -003362 -20221125 2023届高三12班 0.809 -010602 -20221125 2023届高三12班 0.667 0.952 +600 +K0819005X -000248 -20221125 2023届高三12班 0.429 -009784 -20221125 2023届高三12班 1.000 +620 +K0819005X -008831 -20221125 2023届高三12班 0.905 -000258 -20221125 2023届高三12班 0.952 +632 +KNONE -000263 -20221125 2023届高三12班 0.952 -009791 -20221125 2023届高三12班 1.000 +640 +K0819005X -002141 -20221125 2023届高三12班 0.238 -002136 -20221125 2023届高三12班 0.857 +658 +K0819005X -004538 -20221125 2023届高三12班 0.809 -002187 -20221125 2023届高三12班 0.714 +694 +K0819005X -010622 -20221125 2023届高三12班 0.952 0.905 1.000 -008760 -20221125 2023届高三12班 0.762 +722 +K0819005X -002213 -20221125 2023届高三12班 0.619 -009801 -20221125 2023届高三12班 0.667 0.667 +735 +K0819005X -009803 -20221125 2023届高三12班 0.762 -004213 -20221125 2023届高三12班 0.619 +737 +K0819005X -008805 -20221125 2023届高三12班 0.714 -000960 -20221125 2023届高三01班 0.903 +753 +K0819005X -002162 -20221125 2023届高三01班 0.742 -002168 -20221125 2023届高三01班 0.774 +774 +K0819005X -003362 -20221125 2023届高三01班 0.839 -010602 -20221125 2023届高三01班 0.839 0.935 +800 +K0819005X -000248 -20221125 2023届高三01班 0.581 -009784 -20221125 2023届高三01班 0.613 +811 +K0819002X -008831 -20221125 2023届高三01班 1.000 -000258 -20221125 2023届高三01班 0.968 +823 +K0819005X -000263 -20221125 2023届高三01班 0.935 -009791 -20221125 2023届高三01班 1.000 +828 +K0819005X -002141 -20221125 2023届高三01班 0.806 -002136 -20221125 2023届高三01班 0.710 +837 +K0819004X -004538 -20221125 2023届高三01班 0.903 -002187 -20221125 2023届高三01班 0.903 +849 +K0819005X -010622 -20221125 2023届高三01班 0.935 0.871 1.000 -008760 -20221125 2023届高三01班 0.774 +866 +K0819005X -002213 -20221125 2023届高三01班 0.903 -009801 -20221125 2023届高三01班 1.000 0.968 +873 +K0819005X -009803 -20221125 2023届高三01班 0.903 -004213 -20221125 2023届高三01班 0.774 +885 +K0819005X -008805 -20221125 2023届高三01班 0.839 -000960 -20221125 2023届高三02班 0.700 +906 +KNONE -002162 -20221125 2023届高三02班 0.733 -002168 -20221125 2023届高三02班 0.800 +914 +K0819005X -003362 -20221125 2023届高三02班 0.833 -010602 -20221125 2023届高三02班 0.933 0.967 +929 +K0819005X -000248 -20221125 2023届高三02班 0.533 -009784 -20221125 2023届高三02班 0.700 +951 +K0819005X -008831 -20221125 2023届高三02班 0.833 -000258 -20221125 2023届高三02班 0.900 +2611 +KNONE -000263 -20221125 2023届高三02班 1.000 -009791 -20221125 2023届高三02班 0.967 +2612 +K0819005X -002141 -20221125 2023届高三02班 0.733 -002136 -20221125 2023届高三02班 0.933 +2613 +K0819005X -004538 -20221125 2023届高三02班 0.833 -002187 -20221125 2023届高三02班 0.967 +2614 +K0819005X -010622 -20221125 2023届高三02班 0.933 0.933 1.000 -008760 -20221125 2023届高三02班 0.467 +2615 +K0819005X -002213 -20221125 2023届高三02班 0.967 -009801 -20221125 2023届高三02班 0.800 0.833 +2616 +K0819005X -009803 -20221125 2023届高三02班 0.800 -004213 -20221125 2023届高三02班 0.633 +2617 +K0819005X -008805 -20221125 2023届高三02班 0.900 -000960 -20221125 2023届高三03班 0.964 +2618 +K0819005X -002162 -20221125 2023届高三03班 0.679 -002168 -20221125 2023届高三03班 0.679 +2619 +K0819002X -003362 -20221125 2023届高三03班 0.786 -010602 -20221125 2023届高三03班 0.893 0.857 +2620 +K0819005X -000248 -20221125 2023届高三03班 0.500 -009784 -20221125 2023届高三03班 0.679 +2621 +K0819002X +K0819004X -008831 -20221125 2023届高三03班 0.893 -000258 -20221125 2023届高三03班 0.964 +2622 +K0819005X -000263 -20221125 2023届高三03班 0.964 -009791 -20221125 2023届高三03班 0.893 +2623 +K0819005X -002141 -20221125 2023届高三03班 0.714 -002136 -20221125 2023届高三03班 0.929 +2624 +K0820003X -004538 -20221125 2023届高三03班 0.893 -002187 -20221125 2023届高三03班 0.964 +2625 +KNONE -010622 -20221125 2023届高三03班 0.893 0.964 1.000 -008760 -20221125 2023届高三03班 0.571 +2626 +K0820001X -002213 -20221125 2023届高三03班 0.714 -009801 -20221125 2023届高三03班 0.714 0.607 +2627 +K0820001X -009803 -20221125 2023届高三03班 0.536 -004213 -20221125 2023届高三03班 0.536 +2628 +K0820001X -008805 -20221125 2023届高三03班 0.821 -000960 -20221125 2023届高三04班 0.893 +2629 +K0820003X -002162 -20221125 2023届高三04班 0.643 -002168 -20221125 2023届高三04班 0.571 +2630 +K0819005X +K0820003X -003362 -20221125 2023届高三04班 0.893 -010602 -20221125 2023届高三04班 0.964 0.893 +2631 +K0820001X -000248 -20221125 2023届高三04班 0.607 -009784 -20221125 2023届高三04班 0.643 +2633 +K0819005X -008831 -20221125 2023届高三04班 0.929 -000258 -20221125 2023届高三04班 0.964 +2634 +K0820001X +K0819005X -000263 -20221125 2023届高三04班 0.821 -009791 -20221125 2023届高三04班 1.000 +2635 +K0819006X -002141 -20221125 2023届高三04班 0.607 -002136 -20221125 2023届高三04班 0.857 +2636 +K0820003X -004538 -20221125 2023届高三04班 0.821 -002187 -20221125 2023届高三04班 0.964 +2637 +K0819006X -010622 -20221125 2023届高三04班 0.964 0.750 0.857 -008760 -20221125 2023届高三04班 0.786 +2639 +K0820001X -002213 -20221125 2023届高三04班 0.679 -009801 -20221125 2023届高三04班 0.893 0.929 +3572 +KNONE -009803 -20221125 2023届高三04班 0.464 -004213 -20221125 2023届高三04班 0.607 +3573 +K0820001X -008805 -20221125 2023届高三04班 0.821 -000960 -20221125 2023届高三05班 0.886 +3578 +K0820001X +K0820003X -002162 -20221125 2023届高三05班 0.514 -002168 -20221125 2023届高三05班 0.743 +3583 +KNONE -003362 -20221125 2023届高三05班 0.714 -010602 -20221125 2023届高三05班 0.829 0.857 +3584 +K0819005X -000248 -20221125 2023届高三05班 0.429 -009784 -20221125 2023届高三05班 0.629 +3594 +K0819005X -008831 -20221125 2023届高三05班 0.771 -000258 -20221125 2023届高三05班 1.000 +3634 +K0819005X -000263 -20221125 2023届高三05班 0.886 -009791 -20221125 2023届高三05班 0.971 +3654 +K0819005X -002141 -20221125 2023届高三05班 0.514 -002136 -20221125 2023届高三05班 0.943 +3735 +K0819005X -004538 -20221125 2023届高三05班 0.886 -002187 -20221125 2023届高三05班 0.971 +3750 +KNONE -010622 -20221125 2023届高三05班 0.800 0.943 0.943 -008760 -20221125 2023届高三05班 0.571 +3764 +K0819005X -002213 -20221125 2023届高三05班 0.800 -009801 -20221125 2023届高三05班 0.886 0.714 +3811 +K0820001X -009803 -20221125 2023届高三05班 0.771 -004213 -20221125 2023届高三05班 0.600 +3840 +K0819005X +K0820001X +K0820002X -008805 -20221125 2023届高三05班 0.714 -000960 -20221125 2023届高三06班 0.703 +3851 +K0820003X -002162 -20221125 2023届高三06班 0.703 -002168 -20221125 2023届高三06班 0.568 +3867 +K0819005X -003362 -20221125 2023届高三06班 0.838 -010602 -20221125 2023届高三06班 0.919 0.973 +3883 +K0820003X -000248 -20221125 2023届高三06班 0.703 -009784 -20221125 2023届高三06班 0.838 +3899 +KNONE -008831 -20221125 2023届高三06班 0.919 -000258 -20221125 2023届高三06班 0.973 +3942 +K0820001X -000263 -20221125 2023届高三06班 1.000 -009791 -20221125 2023届高三06班 0.892 +3962 +K0820001X -002141 -20221125 2023届高三06班 0.757 -002136 -20221125 2023届高三06班 0.946 +3976 +KNONE -004538 -20221125 2023届高三06班 0.838 -002187 -20221125 2023届高三06班 1.000 +3991 +K0820001X -010622 -20221125 2023届高三06班 0.865 0.865 0.973 -008760 -20221125 2023届高三06班 0.757 +3997 +K0819002X -002213 -20221125 2023届高三06班 0.838 -009801 -20221125 2023届高三06班 0.892 0.919 +4019 +K0820002X +K0819005X -009803 -20221125 2023届高三06班 0.784 -004213 -20221125 2023届高三06班 0.622 +4020 +K0819005X -008805 -20221125 2023届高三06班 0.865 -000960 -20221125 2023届高三07班 0.935 +4021 +K0819005X -002162 -20221125 2023届高三07班 0.516 -002168 -20221125 2023届高三07班 0.581 +4027 +K0819005X +K0820001X -003362 -20221125 2023届高三07班 0.774 -010602 -20221125 2023届高三07班 0.742 0.903 +4028 +K0819006X -000248 -20221125 2023届高三07班 0.645 -009784 -20221125 2023届高三07班 0.774 +4030 +K0819002X -008831 -20221125 2023届高三07班 0.806 -000258 -20221125 2023届高三07班 0.968 +4104 +K0819005X -000263 -20221125 2023届高三07班 0.774 -009791 -20221125 2023届高三07班 0.968 +4127 +K0819005X -002141 -20221125 2023届高三07班 0.161 -002136 -20221125 2023届高三07班 0.839 +4148 +K0819005X -004538 -20221125 2023届高三07班 0.935 -002187 -20221125 2023届高三07班 0.935 +4170 +K0819005X -010622 -20221125 2023届高三07班 0.742 0.516 0.774 -008760 -20221125 2023届高三07班 0.806 +4192 +K0819002X -002213 -20221125 2023届高三07班 0.581 -009801 -20221125 2023届高三07班 0.968 0.871 +4211 +K0820001X -009803 -20221125 2023届高三07班 0.290 -004213 -20221125 2023届高三07班 0.387 +4231 +K0819005X -008805 -20221125 2023届高三07班 0.774 -000960 -20221125 2023届高三08班 0.903 +4250 +K0819005X -002162 -20221125 2023届高三08班 0.677 -002168 -20221125 2023届高三08班 0.935 +4298 +K0819005X -003362 -20221125 2023届高三08班 0.903 -010602 -20221125 2023届高三08班 0.871 0.968 +4342 +K0820003X -000248 -20221125 2023届高三08班 0.613 -009784 -20221125 2023届高三08班 0.774 +4394 +KNONE -008831 -20221125 2023届高三08班 0.839 -000258 -20221125 2023届高三08班 0.903 +4430 +K0819005X -000263 -20221125 2023届高三08班 0.903 -009791 -20221125 2023届高三08班 0.903 +4450 +K0819005X -002141 -20221125 2023届高三08班 0.806 -002136 -20221125 2023届高三08班 0.903 +4475 +K0819005X -004538 -20221125 2023届高三08班 0.935 -002187 -20221125 2023届高三08班 0.903 +4517 +K0819005X -010622 -20221125 2023届高三08班 1.000 0.839 0.903 -008760 -20221125 2023届高三08班 0.613 +4536 +K0819005X -002213 -20221125 2023届高三08班 0.710 -009801 -20221125 2023届高三08班 0.806 0.774 +4558 +K0819005X -009803 -20221125 2023届高三08班 0.581 -004213 -20221125 2023届高三08班 0.419 +4625 +K0820003X -008805 -20221125 2023届高三08班 0.677 -000960 -20221125 2023届高三09班 0.833 +4663 +K0819005X -002162 -20221125 2023届高三09班 0.533 -002168 -20221125 2023届高三09班 0.700 +4678 +K0820003X +K0819005X -003362 -20221125 2023届高三09班 0.900 -010602 -20221125 2023届高三09班 0.867 1.000 +4686 +K0819005X -000248 -20221125 2023届高三09班 0.667 -009784 -20221125 2023届高三09班 0.967 +4711 +K0820002X +K0819005X -008831 -20221125 2023届高三09班 0.900 -000258 -20221125 2023届高三09班 0.933 +4727 +K0819005X -000263 -20221125 2023届高三09班 0.833 -009791 -20221125 2023届高三09班 0.867 +4747 +K0819005X -002141 -20221125 2023届高三09班 0.433 -002136 -20221125 2023届高三09班 0.900 +7526 +KNONE -004538 -20221125 2023届高三09班 0.767 -002187 -20221125 2023届高三09班 0.867 +7527 +K0819005X -010622 -20221125 2023届高三09班 0.900 0.833 0.933 -008760 -20221125 2023届高三09班 0.400 +7528 +K0819002X -002213 -20221125 2023届高三09班 0.733 -009801 -20221125 2023届高三09班 0.667 0.600 +7529 +K0819005X -009803 -20221125 2023届高三09班 0.633 -004213 -20221125 2023届高三09班 0.367 +7530 +K0819005X + + +7531 +K0819005X + + +7532 +K0819005X + + +7533 +K0820001X + + +7534 +K0820001X + + +7535 +K0820001X + + +7536 +K0820001X + + +7537 +K0820001X + + +7538 +K0820001X + + +7539 +K0819006X + + +7540 +K0819006X + + +7541 +K0819002X + + +7542 +K0819005X + + +7543 +K0819005X + + +7544 +K0819002X + + +7545 +K0819002X + + +7546 +K0819005X + + +7547 +K0819005X + + +7548 +K0820003X + + +7549 +K0819002X +K0819005X + + +7550 +K0820001X + + +7551 +K0820003X + + +7552 +K0819005X + + +7553 +K0819005X + + +7554 +K0819005X + + +7555 +K0819005X + + +7556 +K0819005X + + +7557 +K0819005X + + +7558 +K0820003X + + +7559 +K0819002X + + +7560 +K0819005X + + +7561 +K0819005X + + +7562 +K0819005X + + +7563 +K0819002X + + +7564 +K0820001X + + +7565 +K0820001X + + +7566 +K0820001X + + +7567 +K0820001X + + +7568 +K0820001X + + +7569 +K0820001X + + +7570 +K0820001X + + +7571 +K0820001X + + +7572 +K0820001X + + +7573 +K0820001X + + +7574 +K0819002X + + +7575 +K0819002X + + +7576 +K0819002X + + +7577 +K0819005X + + +7578 +K0819005X + + +7580 +K0820001X + + +7581 +K0819005X + + +7582 +K0819002X + + +7583 +KNONE + + +7584 +K0820001X + + +7585 +K0819006X + + +7586 +K0819005X + + +7587 +K0819005X + + +7588 +K0819005X + + +7589 +K0819005X + + +7590 +K0819005X + + +7591 +K0819005X + + +7592 +K0819005X + + +7593 +K0819005X + + +7594 +K0819005X + + +7595 +K0819005X + + +7596 +K0819005X + + +7597 +K0819005X + + +7598 +K0819005X + + +7599 +K0819005X + + +7600 +KNONE + + +7601 +K0819005X + + +7602 +K0819005X + + +7603 +K0819005X + + +7604 +K0819002X + + +7605 +K0819005X + + +7606 +K0819005X + + +7607 +K0819005X + + +7608 +K0819005X +K0820003X + + +7609 +KNONE + + +7610 +KNONE + + +7611 +K0820001X + + +7612 +K0820001X + + +7613 +K0820001X + + +7614 +K0820001X + + +7615 +K0820001X + + +7616 +KNONE + + +7617 +K0820001X + + +7618 +K0820002X + + +7619 +KNONE + + +7620 +K0820001X + + +7621 +K0820001X + + +7622 +K0820002X + + +7623 +K0819005X + + +7625 +K0820001X + + +7626 +K0820001X + + +7627 +K0820001X + + +7628 +K0819006X + + +7629 +K0820001X + + +7630 +K0820001X + + +7631 +K0819005X + + +7632 +KNONE + + +7633 +K0820001X +K0819005X + + +7636 +K0820001X + + +7637 +K0820001X + + +7638 +K0819006X + + +7639 +K0819006X + + +7640 +K0819006X + + +7641 +K0819006X + + +7642 +K0819006X + + +7643 +K0819006X + + +7644 +K0819006X + + +7645 +K0819006X + + +7646 +K0820001X + + +7647 +K0820001X + + +7648 +K0820001X + + +7649 +KNONE + + +7650 +KNONE + + +7651 +K0820001X + + +7652 +KNONE + + +7653 +KNONE + + +7654 +KNONE + + +7655 +KNONE + + +7656 +KNONE + + +7657 +KNONE + + +7658 +K0820001X + + +7659 +K0819005X + + +7660 +K0819005X + + +7661 +K0820001X + + +7662 +K0820001X + + +7663 +K0819002X + + +7664 +K0819002X + + +7676 +K0820001X + + +7677 +K0820001X + + +7678 +K0820001X + + +7679 +K0819005X + + +9303 +K0819005X + + +9304 +K0819005X + + +9305 +K0819005X + + +9306 +K0819005X + + +9307 +KNONE + + +9308 +K0819006X + + +9309 +KNONE + + +9310 +K0820001X + + +9311 +K0819005X + + +9312 +K0820001X + + +9313 +K0820003X + + +9314 +K0820001X + + +9315 +K0819005X + + +9316 +K0819005X + + +9317 +KNONE + + +9318 +K0819006X + + +9319 +K0819006X + + +9320 +K0819005X + + +9325 +K0819005X + + +9331 +KNONE + + +9334 +K0819005X + + +9339 +K0820002X + + +9343 +K0820001X + + +9344 +KNONE + + +9407 +K0819005X + + +9408 +K0820002X + + +9411 +K0819005X + + +9419 +K0820001X + + +9421 +K0819005X + + +9422 +KNONE + + +9945 +K0819005X + + +9946 +K0819006X + + +9947 +K0820001X + + +9948 +K0820003X + + +9990 +K0819006X + + +10875 +K0819002X +K0819005X + + +10876 +K0819005X + + +10877 +K0819002X + + +10878 +K0820003X + + +10879 +K0819005X + + +10880 +K0819005X + + +10881 +K0820003X + + +10882 +K0819005X + + +10883 +K0819002X + + +10990 +K0819005X + + +11030 +KNONE + + +11054 +K0819005X + + +11137 +K0819005X + + +11226 +K0819005X + + +11269 +K0819005X + + +11293 +K0819005X + + +11308 +K0819005X + + +11340 +K0819005X + + +11347 +K0819005X + + +11369 +K0819002X + + +11396 +K0819005X + + +11415 +K0819005X + + +11442 +K0820001X + + +11459 +K0819005X + + +11498 +K0819005X + + +11528 +K0819005X + + +11628 +K0819005X + + +11651 +K0819005X + + +11703 +K0819005X + + +11723 +KNONE + + +11993 +K0819005X + + +12011 +K0819005X + + +12026 +K0819005X +K0820003X + + +30022 +K0819005X + + +30071 +K0820001X + -008805 -20221125 2023届高三09班 0.700 diff --git a/工具/根据目标列表批量生成对应题目的字典.ipynb b/工具/根据目标列表批量生成对应题目的字典.ipynb index 500863b5..57ee1fa1 100644 --- a/工具/根据目标列表批量生成对应题目的字典.ipynb +++ b/工具/根据目标列表批量生成对应题目的字典.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -14,44 +14,39 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# 输入目标列表\n", - "t = \"\"\"K0719001X\n", - "K0719002X\n", - "K0719003X\n", - "K0719004X\n", - "K0719005X\n", - "K0719006X\n", - "K0720001X\n", - "K0720002X\n", - "K0720003X\n", - "K0720004X\n", - "K0720005X\n", + "t = \"\"\"K0819001X\n", + "K0819002X\n", + "K0819003X\n", + "K0819004X\n", + "K0819005X\n", + "K0819006X\n", + "K0820001X\n", + "K0820002X\n", + "K0820003X\n", "\"\"\"" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\"K0719001X\":\"004654\",\n", - "\"K0719002X\":\"002393,009099\",\n", - "\"K0719003X\":\"000369,000467,000669,000728,000806,000833,000878,000909,000957,000968,002395,002397,002405,002406,002407,003448,003639,003837,003930,003945,004197,004221,004495,004514,004524,004550,004570,008921,008924,008926,008928,008935,008960,009077,009105,009837,009840,010682\",\n", - "\"K0719004X\":\"000337,000707,000739,000783,000864,002408,002409,002410,002439,003437,003449,008920,008927,008953,008956,009081,009836,010684\",\n", - "\"K0719005X\":\"000290,002440,002441,002450,004078,010703\",\n", - "\"K0719006X\":\"000275,002402,002421,002689,003440,003599,003781,008923,010683\",\n", - "\"K0720002X\":\"002426\",\n", - "\"K0720003X\":\"000282,000464,002398,002400,002401,002403,002404,002411,002412,002413,002417,002418,002419,002420,002422,002423,002424,002425,002427,002429,002430,002434,002436,002437,002445,002690,003438,003439,003441,003443,003444,003446,003447,003450,003451,004141,004225,004351,004372,004626,004639,004713,004764,008922,008925,008930,008931,008932,008933,008934,008936,008954,008955,008968,009098,009106,009110,009838,009839,010685,010688,010689\",\n", - "\"K0720004X\":\"000804,003795,004065,008929,008937,008957,010686\",\n", - "\"K0720005X\":\"002438\",\n" + "\"K0819002X\":\"000811,002619,003997,004192,007528,007541,007544,007545,007559,007563,007574,007575,007576,007582,007604,007663,007664,010877,010883,011369\",\n", + "\"K0819004X\":\"000837,002621\",\n", + "\"K0819005X\":\"000333,000340,000373,000385,000393,000398,000410,000418,000435,000439,000470,000483,000502,000521,000532,000539,000563,000568,000580,000600,000620,000640,000658,000694,000722,000735,000737,000753,000774,000800,000823,000828,000849,000866,000873,000885,000914,000929,000951,002612,002613,002614,002615,002616,002617,002618,002620,002622,002623,002633,003584,003594,003634,003654,003735,003759,003764,003867,004021,004030,004104,004127,004148,004170,004231,004250,004298,004430,004450,004475,004517,004536,004558,004663,004686,004727,004747,007527,007529,007530,007531,007532,007542,007543,007546,007547,007549,007552,007553,007554,007555,007556,007557,007560,007561,007562,007577,007578,007581,007586,007587,007588,007589,007590,007591,007592,007593,007594,007595,007596,007597,007598,007599,007601,007602,007603,007605,007606,007607,007623,007631,007659,007660,007679,009303,009304,009305,009306,009311,009315,009316,009320,009325,009334,009407,009411,009421,009945,010875,010876,010879,010880,010882,010990,011054,011137,011226,011269,011293,011308,011340,011347,011396,011415,011459,011498,011528,011628,011651,011703,011993,012011,030022\",\n", + "\"K0819006X\":\"002635,002637,004028,007539,007540,007585,007628,007638,007639,007640,007641,007642,007643,007644,007645,009308,009318,009319,009946,009990\",\n", + "\"K0820001X\":\"002626,002627,002628,002631,002634,002639,003573,003811,003942,003962,003991,004020,004027,004211,007533,007534,007535,007536,007537,007538,007550,007564,007565,007566,007567,007568,007569,007570,007571,007572,007573,007580,007584,007611,007612,007613,007614,007615,007617,007620,007621,007625,007626,007627,007629,007630,007633,007636,007637,007646,007647,007648,007651,007658,007661,007662,007676,007677,007678,009310,009312,009314,009343,009419,009947,011442,030071\",\n", + "\"K0820002X\":\"000359,003840,004019,004711,007618,007622,009339,009408\",\n", + "\"K0820003X\":\"002624,002629,002630,002636,003578,003851,003883,004342,004625,004678,007548,007551,007558,007608,009313,009948,010878,010881,012026\",\n" ] } ], diff --git a/工具/目标挂钩简要清点.ipynb b/工具/目标挂钩简要清点.ipynb index e58c0688..2109745c 100644 --- a/工具/目标挂钩简要清点.ipynb +++ b/工具/目标挂钩简要清点.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -24,22 +24,22 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "第一单元 . 总题数: 1766 , 完成对应题数: 1400\n", + "第一单元 . 总题数: 1767 , 完成对应题数: 1400\n", "第二单元 . 总题数: 2495 , 完成对应题数: 2127\n", "第三单元 . 总题数: 2079 , 完成对应题数: 395\n", - "第四单元 . 总题数: 1126 , 完成对应题数: 1032\n", - "第五单元 . 总题数: 1329 , 完成对应题数: 305\n", + "第四单元 . 总题数: 1127 , 完成对应题数: 1033\n", + "第五单元 . 总题数: 1329 , 完成对应题数: 306\n", "第六单元 . 总题数: 1074 , 完成对应题数: 431\n", - "第七单元 . 总题数: 1338 , 完成对应题数: 953\n", - "第八单元 . 总题数: 1221 , 完成对应题数: 195\n", - "第九单元 . 总题数: 252 , 完成对应题数: 101\n" + "第七单元 . 总题数: 1342 , 完成对应题数: 957\n", + "第八单元 . 总题数: 1194 , 完成对应题数: 519\n", + "第九单元 . 总题数: 277 , 完成对应题数: 101\n" ] } ], @@ -50,16 +50,16 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(12680, 6939)" + "(12684, 7269)" ] }, - "execution_count": 3, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } diff --git a/工具/讲义生成.ipynb b/工具/讲义生成.ipynb index 3dfb7e1c..10546d20 100644 --- a/工具/讲义生成.ipynb +++ b/工具/讲义生成.ipynb @@ -13,9 +13,9 @@ "题块 1 处理完毕.\n", "正在处理题块 2 .\n", "题块 2 处理完毕.\n", - "开始编译教师版本pdf文件: 临时文件/37_抛物线的概念及性质_教师_20221129.tex\n", + "开始编译教师版本pdf文件: 临时文件/38_计数原理与排列组合_教师_20221129.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/37_抛物线的概念及性质_学生_20221129.tex\n", + "开始编译学生版本pdf文件: 临时文件/38_计数原理与排列组合_学生_20221129.tex\n", "0\n" ] } @@ -35,7 +35,7 @@ "\n", "\"\"\"---设置其他预处理替换命令---\"\"\"\n", "#2023届第一轮讲义更换标题\n", - "exec_list = [(\"标题数字待处理\",\"37\"),(\"标题文字待处理\",\"抛物线的概念及性质\")] \n", + "exec_list = [(\"标题数字待处理\",\"38\"),(\"标题文字待处理\",\"计数原理与排列组合\")] \n", "enumi_mode = 0\n", "\n", "#2023届测验卷与周末卷\n", @@ -49,14 +49,14 @@ "\"\"\"---其他预处理替换命令结束---\"\"\"\n", "\n", "\"\"\"---设置目标文件名---\"\"\"\n", - "destination_file = \"临时文件/37_抛物线的概念及性质\"\n", + "destination_file = \"临时文件/38_计数原理与排列组合\"\n", "\"\"\"---设置目标文件名结束---\"\"\"\n", "\n", "\n", "\"\"\"---设置题号数据---\"\"\"\n", "problems = [\n", - "\"669,3837,4495,3437,2402,2426,2403,2417,804,282,2689,4550\",\n", - "\",8926,3438,3781,9081,2424,2418,8923,2434,8956,2429,8937\"\n", + "\"7366,7371,7376,7368,7501,9254,2605,3567,2602,3581,7423,9274,2550,9935,9285,7361,7506,10868,11229,7447,7450,11679,9355\",\n", + "\"7380,7673,7455,7502,3666,2586,2537,7432,2563,2549,9262,7521,9333,10861,7494,7476,3640,9351,3574\"\n", "\n", "]\n", "\"\"\"---设置题号数据结束---\"\"\"\n", @@ -208,7 +208,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, @@ -222,12 +222,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" + "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, diff --git a/工具/题号选题pdf生成.ipynb b/工具/题号选题pdf生成.ipynb index fbd14b4c..c5d3574b 100644 --- a/工具/题号选题pdf生成.ipynb +++ b/工具/题号选题pdf生成.ipynb @@ -2,16 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "开始编译教师版本pdf文件: 临时文件/提高03_教师用_20221129.tex\n", + "开始编译教师版本pdf文件: 临时文件/题库_教师用_20221129.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/提高03_学生用_20221129.tex\n", + "开始编译学生版本pdf文件: 临时文件/题库_学生用_20221129.tex\n", "0\n" ] } @@ -26,14 +26,14 @@ "\"\"\"---设置题目列表---\"\"\"\n", "#留空为编译全题库, a为读取临时文件中的题号筛选.txt文件生成题库\n", "problems = r\"\"\"\n", - "30485:30493\n", + "\n", "\n", "\"\"\"\n", "\"\"\"---设置题目列表结束---\"\"\"\n", "\n", "\"\"\"---设置文件名---\"\"\"\n", "#目录和文件的分隔务必用/\n", - "filename = \"临时文件/提高03\"\n", + "filename = \"临时文件/题库\"\n", "\"\"\"---设置文件名结束---\"\"\"\n", "\n", "\n", @@ -174,7 +174,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, @@ -188,12 +188,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" + "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 96e84dd2..3af29600 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -8849,7 +8849,8 @@ "content": "设常数$a>0$, $(x+\\dfrac{a}{\\sqrt{x}})^9$展开式中$x^6$的系数为$4$, 则$\\displaystyle\\lim_{n\\to \\infty}(a+a^2+\\cdots+a^n)=$\\blank{50}.", "objs": [ "K0405002X", - "K0405003X" + "K0405003X", + "K0819005X" ], "tags": [ "第四单元", @@ -9087,7 +9088,9 @@ "000340": { "id": "000340", "content": "在$(x+\\dfrac{2}{x^2})^6$的二项展开式中第四项的系数是\\blank{50}(结果用数值表示).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -9462,7 +9465,9 @@ "000350": { "id": "000350", "content": "已知$(a+3b)^n$的展开式中, 各项系数的和与各项二项式系数的和之比为$64$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -9760,7 +9765,9 @@ "000359": { "id": "000359", "content": "若$(1+x)^5=a_0+a_1x+a_2x^2+\\cdots+a_5x^5$, 则$a_1+a_2+\\cdots+a_5=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -10279,7 +10286,9 @@ "000373": { "id": "000373", "content": "若$(2x^2+\\dfrac1x)^n$($n\\in \\mathbf{N}$, $n\\ge 1$)的二项展开式中的第$9$项是常数项, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -10720,7 +10729,9 @@ "000385": { "id": "000385", "content": "设常数$a>0$, 若$(x+\\dfrac ax)^9$的二项展开式中$x^5$的系数为$144$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -11030,7 +11041,9 @@ "000393": { "id": "000393", "content": "设$(1+x)^n=a_0+a_1x+a_2x^2+a_3x^3+\\cdots +a_nx^n$, 若$\\dfrac{a_2}{a_3}=\\dfrac13$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -11199,7 +11212,9 @@ "000398": { "id": "000398", "content": "在二项式$(x+\\dfrac2x)^6$的展开式中, 常数项是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -11532,7 +11547,9 @@ "000410": { "id": "000410", "content": "$(1+2x)^6$展开式中$x^3$项的系数为\\blank{50}(用数字作答).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -11753,7 +11770,9 @@ "000418": { "id": "000418", "content": "$(1-\\dfrac x2)^8$的二项展开式中含$x^2$项的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -12215,7 +12234,9 @@ "000435": { "id": "000435", "content": "设函数$f(x)=\\begin{cases} x^6, & x\\ge 1, \\\\ -2x-1, & x\\le -1, \\end{cases}$ 则当$x\\le -1$时, $f[f(x)]$表达式的展开式中含${x^2}$项的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -12317,7 +12338,9 @@ "000439": { "id": "000439", "content": "二项式$(x^2+\\dfrac 1x)^5$的展开式中, $x$的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -12927,7 +12950,9 @@ "000462": { "id": "000462", "content": "在$(\\dfrac3{x^2}+\\sqrt{x})^n$的二项展开式中, 所有项的二项式系数之和为$1024$, 则常数项的值等于\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -13149,7 +13174,9 @@ "000470": { "id": "000470", "content": "在代数式$(x+\\dfrac 1{x^2})^7$的展开式中, 一次项的系数是\\blank{50}(用数字作答).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -13501,7 +13528,9 @@ "000483": { "id": "000483", "content": "$(x+\\dfrac{1}{x^2})^9$的二项展开式中, 常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -14004,7 +14033,9 @@ "000502": { "id": "000502", "content": "已知二项式展开式$(1-2x)^7=a_0+a_1x+a_2x^2+\\cdots +a_7x^7$, 且复数$z=\\dfrac12a_1+\\dfrac{a_7}{128}\\mathrm{i}$, 则复数$z$的模$|z|=$\\blank{50}(其中$\\mathrm{i}$是虚数单位).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第五单元", "第八单元", @@ -14546,7 +14577,9 @@ "000521": { "id": "000521", "content": "在$(x-a)^{10}$的展开式中, $x^7$的系数是$15$, 则实数$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -14827,7 +14860,9 @@ "000532": { "id": "000532", "content": "在$(1+2x)^5$的展开式中, $x^2$项系数为\\blank{50}(用数字作答).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -15003,7 +15038,9 @@ "000539": { "id": "000539", "content": "$(\\sqrt x-\\dfrac1x)^9$的二项展开式中的常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -15644,7 +15681,9 @@ "000563": { "id": "000563", "content": "已知$(1+2x)^6$展开式的二项式系数的最大值为$a$, 系数的最大值为$b$, 则$\\dfrac ba=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -15778,7 +15817,9 @@ "000568": { "id": "000568", "content": "二项式$(x-\\dfrac1{2x})^4$的展开式中的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -16106,7 +16147,9 @@ "000580": { "id": "000580", "content": "在$(x-\\dfrac2x)^6$的二项展开式中, 常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -16462,7 +16505,9 @@ "000593": { "id": "000593", "content": "若$(2x+\\dfrac 1x)^n$的二项展开式中的所有二项式系数之和等于$256$, 则该展开式中常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -17162,7 +17207,9 @@ "000620": { "id": "000620", "content": "若$(x+2)^n=x^n+ax^{n-1}+\\cdots+bx+c \\ (n\\in \\mathbf{N}^*, \\ n\\ge 3)$, 且$b=4c$, 则$a$的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -17489,7 +17536,9 @@ "000632": { "id": "000632", "content": "若$(\\sqrt x-\\dfrac1x)^n$的二项展开式中各项的二项式系数的和是$64$, 则展开式中的常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -17719,7 +17768,9 @@ "000640": { "id": "000640", "content": "若$(x+a)^7$的二项展开式中, 含$x^6$项的系数为$7$, 则实数$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -18197,7 +18248,9 @@ "000658": { "id": "000658", "content": "已知$(x-\\dfrac ax)^7$展开式中$x^3$的系数为$84$, 则正实数$a$的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -19177,7 +19230,9 @@ "000694": { "id": "000694", "content": "设多项式$1+x+(1+x)^2+(1+x)^3+\\cdots+(1+x)^n\\ (x\\ne 0, \\ n\\in \\mathbf{N}^*)$的展开式中$x$项的系数为$T_n$, 则$\\displaystyle\\lim_{n\\to \\infty}\\dfrac{T_n}{n^2}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -19934,7 +19989,9 @@ "000722": { "id": "000722", "content": "若二项式$(2x+\\dfrac ax)^7$的展开式中一次项的系数是$-70$, 则$\\displaystyle\\lim_{n\\to\\infty}(a+a^2+a^3+\\cdots+a^n)=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -20283,7 +20340,9 @@ "000735": { "id": "000735", "content": "代数式$(x^2+2)(\\dfrac1{x^2}-1)^5$的展开式的常数项是\\blank{50}(用数字作答).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -20333,7 +20392,9 @@ "000737": { "id": "000737", "content": "在$(x+\\dfrac1x)^6$的二项展开式中, 常数项是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -20754,7 +20815,9 @@ "000753": { "id": "000753", "content": "若将函数$f(x)=x^6$表示成$f(x)=a_0+a_1(x-1)+a_2(x-1)^2+a_3(x-1)^3+\\cdots+a_6(x-1)^6$则$a_3$的值等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -21329,7 +21392,9 @@ "000774": { "id": "000774", "content": "$(1+2x)^n$的二项展开式中, 含$x^3$项的系数等于含$x$项的系数的$8$倍, 则正整数$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -22060,7 +22125,9 @@ "000800": { "id": "000800", "content": "$(\\sqrt x+\\dfrac1x)^9$二项展开式中的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -22347,7 +22414,9 @@ "000811": { "id": "000811", "content": "若$(x^3-\\dfrac1{x^2})^n$的展开式中含有非零常数项, 则正整数$n$的最小值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -22672,7 +22741,9 @@ "000823": { "id": "000823", "content": "$(1+\\dfrac1{x^2})(1+x)^6$展开式中$x^2$的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -22821,7 +22892,9 @@ "000828": { "id": "000828", "content": "若$(1+3x)^n$的二项展开式中$x^2$项的系数是$54$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -23053,7 +23126,9 @@ "000837": { "id": "000837", "content": "$(x+\\dfrac1x)^n$的展开式中的第$3$项为常数项, 则正整数$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819004X" + ], "tags": [ "第八单元", "二项式定理" @@ -23373,7 +23448,9 @@ "000849": { "id": "000849", "content": "已知$(ax+\\dfrac1x)^6$二项展开式中的第五项系数为$\\dfrac{15}2$, 则正实数$a$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -23813,7 +23890,9 @@ "000866": { "id": "000866", "content": "记$(2x+\\dfrac1x)^n \\ (n\\in \\mathbf{N}^*$)的展开式中第$m$项的系数为$b_m$, 若$b_3=2b_4$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -24011,7 +24090,9 @@ "000873": { "id": "000873", "content": "$(\\dfrac1x-\\sqrt x)^6$的展开式中, 常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -24344,7 +24425,9 @@ "000885": { "id": "000885", "content": "试写出$(x-\\dfrac1x)^7$展开式中系数最大的项\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -24902,7 +24985,9 @@ "000906": { "id": "000906", "content": "若二项式$(2x-\\dfrac1{\\sqrt x})^n$展开式中的第$5$项为常数项, 则展开式中各项的二项式系数之和为\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -25105,7 +25190,9 @@ "000914": { "id": "000914", "content": "在$(x^3-\\dfrac1x)^8$的展开式中, 其常数项的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -25484,7 +25571,9 @@ "000929": { "id": "000929", "content": "设$a\\ne 0$, $n$是大于$1$的自然数, $(1+\\dfrac xa)^n$的展开式为$a_0+a_1x+a_2x^2+\\cdots+a_nx^n$. 若$a_1=3$, $a_2=4$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -26069,7 +26158,9 @@ "000951": { "id": "000951", "content": "在代数式$(4x^2-2x-5)(1+\\dfrac1{x^2})^5$的展开式中, 常数等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70675,7 +70766,9 @@ "002611": { "id": "002611", "content": "$(x-2y)^{10}$的展开式中, 第$4$项的二项式系数为\\blank{80}, 第$4$项的系数为\\blank{80}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -70700,7 +70793,9 @@ "002612": { "id": "002612", "content": "$\\left(\\dfrac{1}{\\sqrt{x}}-\\sqrt[3]{x}\\right)^{20}$的展开式中, 不含$x$的项是\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70725,7 +70820,9 @@ "002613": { "id": "002613", "content": "$\\left(x+2x^{-2}\\right)^n$的展开式中, 第三项为常数, 则中间项为\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70750,7 +70847,9 @@ "002614": { "id": "002614", "content": "若$\\left(\\sqrt[3]{x}-\\dfrac{2}{x}\\right)^{n}$的展开式中, 第$8$项含$x^{\\frac{1}{3}}$,\n则含$x^{-1}$的是第\\blank{80}项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70775,7 +70874,9 @@ "002615": { "id": "002615", "content": "在$\\left(\\sqrt{2}+\\sqrt[3]{3}\\right)^{100}$的展开式中, 有\\blank{80}项是有理项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70800,7 +70901,9 @@ "002616": { "id": "002616", "content": "$\\left(x+x^{-1}-1\\right)^5$中的常数项为\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70825,7 +70928,9 @@ "002617": { "id": "002617", "content": "在$(ax+1)^7$的展开式中, 已知$x^3$的系数是$x^2$的系数与$x^4$的系数的等差中项, 且实数$a>1$, 则$a=$\\blank{30}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70852,7 +70957,9 @@ "002618": { "id": "002618", "content": "$(1+x)+(1+x)^2+(1+x)^3+\\cdots+(1+x)^{2n} \\ (n\\in \\mathbf{Z}^+)$的展开式中$x^n$项的系数为\\blank{30}(用单个组合数表示).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70879,7 +70986,9 @@ "002619": { "id": "002619", "content": "利用$(1+t)^5$的展开式化简: $(2x+1)^5-5(2x+1)^4+10(2x+1)^3-10(2x+1)^2+5(2x+1)-1=$\\blank{80}.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -70904,7 +71013,9 @@ "002620": { "id": "002620", "content": "$(x+2y+z)^9$的展开式中含$x^2y^3z^4$项的系数为\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70931,7 +71042,10 @@ "002621": { "id": "002621", "content": "[选做]\n设$n$是正整数, 将$(1+x+x^2)^n$的展开式中, $x^k$的系数记作$\\mathrm{D}_n^k$, 称为三项式系数.\n参照二项式系数杨辉三角形中的规律, 探究三项式系数的规律. 要求写出相应的三角数阵, 证明并描述所得数阵的规律.", - "objs": [], + "objs": [ + "K0819002X", + "K0819004X" + ], "tags": [ "第八单元", "二项式定理" @@ -70956,7 +71070,9 @@ "002622": { "id": "002622", "content": "$(1+\\mathrm{i})^{10}$的展开式中, 第八项为\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -70981,7 +71097,9 @@ "002623": { "id": "002623", "content": "在$(1+x)^n$的展开式中, 若第三项和第六项的系数相等, 则$n=$\\blank{80}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -71006,7 +71124,9 @@ "002624": { "id": "002624", "content": "二项式$(x-y)^{99}$中, 系数最小的项是第\\blank{40}项, 系数最大的项是第\\blank{40}项.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -71031,7 +71151,9 @@ "002625": { "id": "002625", "content": "$(2-3x)^n$展开式中各项系数之和为\\blank{40}, 各项二项式系数之和为\\blank{40},\n$x$的奇次幂的项的系数之和为\\blank{40}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -71056,7 +71178,9 @@ "002626": { "id": "002626", "content": "$(2x-1)^5$的展开式中, 各项系数的绝对值之和为\\blank{80}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -71083,7 +71207,9 @@ "002627": { "id": "002627", "content": "当$n$是正整数时, $1-2\\mathrm{C}_n^1+4\\mathrm{C}_n^2-8\\mathrm{C}_n^3+\\cdots+(-2)^n\\mathrm{C}_n^n=$\\blank{80}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -71108,7 +71234,9 @@ "002628": { "id": "002628", "content": "求值: $\\mathrm{C}_{100}^{0}-\\mathrm{C}_{100}^2+\\mathrm{C}_{100}^4-\\mathrm{C}_{100}^6+\\cdots-\\mathrm{C}_{100}^{98}+\\mathrm{C}_{100}^{100}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -71133,7 +71261,9 @@ "002629": { "id": "002629", "content": "求$(2x+3y)^{11}$的展开式中系数最大的项.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -71158,7 +71288,10 @@ "002630": { "id": "002630", "content": "在$(1+x)^n$的展开式中, 有连续三项的二项式系数之比为$3:8:14$, 试在展开式的所有项中, 求系数最大的项.", - "objs": [], + "objs": [ + "K0819005X", + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -71183,7 +71316,9 @@ "002631": { "id": "002631", "content": "(1) 求证: $k\\mathrm{C}_n^k=n\\mathrm{C}_{n-1}^{k-1}$.\\\\ \n(2) {\\it (选做)}已知$n$是正整数, 求$\\mathrm{C}_n^0+\\dfrac{1}{2}\\mathrm{C}_n^1+\\dfrac{1}{3}\\mathrm{C}_n^2+\\cdots+\\dfrac{1}{n+1}\\mathrm{C}_n^n$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理", @@ -71234,7 +71369,9 @@ "002633": { "id": "002633", "content": "$(a+b+c)^5$合并同类项后共有\\blank{40}项, 其中$a^3bc$的系数为\\blank{40}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -71259,7 +71396,10 @@ "002634": { "id": "002634", "content": "$(1+2x+x^2)^{10}(1-x)^5$的展开式中, 各项系数的和为\\blank{30}, 常数项为\\blank{30},\n$x$的奇次项系数的和为\\blank{30}.", - "objs": [], + "objs": [ + "K0820001X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -71284,7 +71424,9 @@ "002635": { "id": "002635", "content": "$77^{77}-15$除以$19$的余数为\\blank{40}.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -71311,7 +71453,9 @@ "002636": { "id": "002636", "content": "$\\left(1+\\sqrt{2}\\right)^{50}$的展开式中最大的项为\\blank{100}.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -71336,7 +71480,9 @@ "002637": { "id": "002637", "content": "证明: 无论$n$是何正整数, $(n+1)^n-1$能被$n^2$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -71386,7 +71532,9 @@ "002639": { "id": "002639", "content": "[选做]\n利用复数的三角形式的有关性质及二项式定理证明:\\\\ \n(1) $1+\\mathrm{C}_n^1\\cos\\alpha+\\mathrm{C}_n^2\\cos 2\\alpha+\\mathrm{C}_n^3\\cos 3\\alpha+\\cdots+\\mathrm{C}_n^n\\cos n\\alpha=2^n\\cos^n\\dfrac{\\alpha}{2}\\cos\\dfrac{n\\alpha}{2}$;\\\\ \n(2) $\\mathrm{C}_n^1\\sin\\alpha+\\mathrm{C}_n^2\\sin 2\\alpha+\\mathrm{C}_n^3\\sin 3\\alpha+\\cdots+\\mathrm{C}_n^n\\sin n\\alpha=2^n\\cos^n\\dfrac{\\alpha}{2}\\sin\\dfrac{n\\alpha}{2}$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -95158,7 +95306,9 @@ "003572": { "id": "003572", "content": "$(2x-\\dfrac 1{\\sqrt x})^6$的展开式中第三项的二项式系数为\\blank{50}, 第三项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -95180,7 +95330,9 @@ "003573": { "id": "003573", "content": "化简: (1) $1+2\\mathrm{C}_n^1+4\\mathrm{C}_n^2+\\cdots+2^n\\mathrm{C}_n^n=$\\blank{50};\\\\\n(2) $\\mathrm{C}_3^3+\\mathrm{C}_4^3+\\mathrm{C}_5^3+\\cdots+\\mathrm{C}_n^3=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -95291,7 +95443,10 @@ "003578": { "id": "003578", "content": "求二项式$(2+x^2)^{32}$展开式中,\\\\\n(1) 二项式系数最大的项;\\\\\n(2) 系数最大的项;\\\\\n(3) 所有项的系数之和.", - "objs": [], + "objs": [ + "K0820001X", + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -95403,7 +95558,9 @@ "003583": { "id": "003583", "content": "在$(\\sqrt[3]x-\\dfrac 1{2\\cdot \\sqrt[3]x})^{10}$的二项展开式中, 常数项是\\blank{50}; 含$x^2$项的二项式系数是\\blank{50}; 含$x^2$项的系数是\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -95425,7 +95582,9 @@ "003584": { "id": "003584", "content": "设$1+(1+x)+(1+x)^2+\\cdots+(1+x)^{2021}=a_0+a_1x+a_2x^2+\\cdots +a_{2021}x^{2021}$, 则$a_{100}+a_{101}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -95658,7 +95817,9 @@ "003594": { "id": "003594", "content": "已知二项式$(x+a)^5$展开式中, $x^2$项的系数为$80$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -96687,7 +96848,9 @@ "003634": { "id": "003634", "content": "在二项式$(2x+1)^5$的展开式中, $x^2$的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -97193,7 +97356,9 @@ "003654": { "id": "003654", "content": "在$(1+x)^7$的二项展开式中, $x^2$项的系数为\\blank{50}(结果用数值表示).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -99200,7 +99365,9 @@ "003735": { "id": "003735", "content": "若二项式$\\left(ax-\\dfrac{\\sqrt{3}}{6}\\right)^3$的展开式的第二项系数为$-\\dfrac{\\sqrt{3}}{2}$, 则实数$a$的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -99549,7 +99716,9 @@ "003750": { "id": "003750", "content": "已知$\\left(\\sqrt{x}+\\dfrac 3{\\sqrt[3]{x}}\\right)^n$展开式中, 各项系数的和与各项二项式系数的和之差为$56$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -99885,7 +100054,9 @@ "003764": { "id": "003764", "content": "设常数$a\\in \\mathbf{R}$, 若$\\left(x^2+\\dfrac ax\\right)^5$的二项展开式中$x^7$的系数为$-10$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -101627,7 +101798,11 @@ "003840": { "id": "003840", "content": "若$(1+x)^n+\\left(1+x^\\frac 12\\right)^n+\\left(1+x^\\frac 13\\right)^n+\\cdots+\\left(1+x^\\frac 1n\\right)^n \\ (n\\in \\mathbf{N}^*)$的展开式中$x$的系数是$a_n$, 展开式中所有项的系数和为$b_n$, 则$\\displaystyle\\lim_{n\\to \\infty}\\dfrac{na_n}{b_n}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X", + "K0820001X", + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -101871,7 +102046,9 @@ "003851": { "id": "003851", "content": "在$(1+x)^n$的展开式中, 第十项是使得二项式系数最大的唯一的项, 则$n$的值是\\blank{50}.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -102238,7 +102415,9 @@ "003867": { "id": "003867", "content": "如果$\\left(\\dfrac{1}{\\sqrt{x}}-\\dfrac{\\sqrt{2}}{2}\\right)^n$展开式第三项的二项式系数为$66$, 那么展开式第六项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -102600,7 +102779,9 @@ "003883": { "id": "003883", "content": "二项式$\\left(x+\\dfrac 1{2x}\\right)^8$展开式中的二项式系数最大的项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -102979,7 +103160,9 @@ "003899": { "id": "003899", "content": "设$A_n$为$(1+x)^{n+1}$的展开式中含$x^{n-1}$项的系数, $B_n$为$(1+x)^{n-1}$的展开式中二项式系数的和($n\\in \\mathbf{N}^*$), 则能使$A_n\\ge B_n$成立的$n$的最大值是\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -103948,7 +104131,9 @@ "003942": { "id": "003942", "content": "计算$1-3\\mathrm{C}_{10}^1+9\\mathrm{C}_{10}^2-27\\mathrm{C}_{10}^3+\\cdots-3^9\\mathrm{C}_{10}^9+3^{10}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -104426,7 +104611,9 @@ "003962": { "id": "003962", "content": "设$(1+x)+(1+x)^2+\\cdots+(1+x)^n=a_0+a_1x+a_2x^2+\\cdots+a_nx^n, \\ n\\in \\mathbf{N}^*$, 若$a_1+a_2+\\cdots+a_{n-1}=61-n$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -104737,7 +104924,9 @@ "003976": { "id": "003976", "content": "设$\\left(3x^{\\frac 13}+x^\\frac 12\\right)^n$展开式的各项系数之和为$t$, 其二项式系数之和为$h$, 且$t+h=272$, 则展开式中$x^2$的系数为\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -105108,7 +105297,9 @@ "003991": { "id": "003991", "content": "若$(x-2)^5=a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$, 则$a_1+a_2+a_3+a_4+a_5=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -105251,7 +105442,9 @@ "003997": { "id": "003997", "content": "如果$\\left(3x^2-\\dfrac{2}{x^3}\\right)^n$的展开式中含有非零常数项, 那么正整数$n$的最小值为\\bracket{20}.\n\\fourch{$10$}{$6$}{$5$}{$3$}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -105789,7 +105982,8 @@ "id": "004019", "content": "已知$(x^2+\\dfrac 1x)^n$的二项展开式的各项系数之和为$32$, 求该二项展开式中$x$的系数.", "objs": [ - "K0819005X" + "K0819005X", + "K0820002X" ], "tags": [ "第八单元", @@ -106060,7 +106254,8 @@ "id": "004030", "content": "利用二项式定理证明: 对于任意正整数$n$, $\\dfrac1{\\sqrt 5}[(2+\\sqrt 5)^n-(2-\\sqrt 5)^n]$都是正整数.", "objs": [ - "K0819005X" + "K0819005X", + "K0819002X" ], "tags": [ "第八单元", @@ -108014,7 +108209,9 @@ "004104": { "id": "004104", "content": "在$(x-\\sqrt 2)^8$的二项展开式中, $x^5$项的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -108674,7 +108871,9 @@ "004127": { "id": "004127", "content": "在$(x^2+\\dfrac 2x)^7$的二项展开式中, $x^2$的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -109239,7 +109438,9 @@ "004148": { "id": "004148", "content": "若$(x+2)^n=x^n+ax^{n-1}+\\cdots +bx+c$($n\\in \\mathbf{N}^*$, $ n\\ge 3$), 且$b=4c$, 则$a$的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -109862,7 +110063,9 @@ "004170": { "id": "004170", "content": "在二项式$(1+ax)^7(a\\in \\mathbf{R})$的展开式中, $x$的系数为$\\dfrac 73$, 则$\\displaystyle\\lim_{n\\to \\infty}(a+a^2+a^3+\\cdots +a^n)$的值是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -110429,7 +110632,9 @@ "004192": { "id": "004192", "content": "已知$(x-\\dfrac 1{2x})^n$的展开式的常数项为第$6$项, 则常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -110896,7 +111101,9 @@ "004211": { "id": "004211", "content": "在$(\\sqrt[3]x+\\dfrac 2x)^n$的二项展开式中, 所有项的系数之和为81, 则其常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -111438,7 +111645,9 @@ "004231": { "id": "004231", "content": "二项式$(\\sqrt[3]x-\\dfrac 2x)^8$的展开式中的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -111951,7 +112160,9 @@ "004250": { "id": "004250", "content": "在$(x-\\dfrac 1{\\sqrt[3]x})^6$的二项展开式中, $x^2$项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -113211,7 +113422,9 @@ "004298": { "id": "004298", "content": "$(1+2x)^n$的二项展开式中, 含$x^3$项的系数等于含$x$项的系数的$8$倍, 则正整数$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -114388,7 +114601,8 @@ "id": "004342", "content": "已知$a$是实数, 在$(1+ax)^8$的二项展开式中, 第$k+1$项的系数为$c_{k+1}=\\mathrm{C}_8^k\\cdot a^k \\ (k=0,1,2,3,\\cdots,8)$. 若$c_10$, $x>0$).\\\\\n(1) 当$m=2$, $n=6$时, 求二项展开式中二项式系数最大的项;\\\\\n(2) 若$(\\dfrac 2m+\\dfrac mx)^{10}=a_0+\\dfrac{a_1}x+\\dfrac{a_2}{x^2}+\\cdots +\\dfrac{a_{10}}{x^{10}}$, 且$a_2=180$, 求$a_i$($0\\le i \\le 10$, $i\\in \\mathbf{N}$)的最大值.", - "objs": [], + "objs": [ + "K0820003X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -123826,7 +124061,9 @@ "004686": { "id": "004686", "content": "在$(1+2x)^6$的二项展开式中, $x^2$项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -124481,7 +124718,10 @@ "004711": { "id": "004711", "content": "若$(x+\\dfrac 1{\\sqrt{x}})^n$的二项展开式中各项系数的和等于$64$, 则其中$x^3$的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0820002X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -124890,7 +125130,9 @@ "004727": { "id": "004727", "content": "$(1+2x)^{10}$ 的二项展开式中, $x^2$ 项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -125391,7 +125633,9 @@ "004747": { "id": "004747", "content": "在$(1+2x)^6$的二项展开式中, $x^5$项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189597,7 +189841,9 @@ "007526": { "id": "007526", "content": "求二项式$(2x-\\dfrac 3{2x^2})^7$展开式的第四项的二项式系数和笫四项的系数.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -189619,7 +189865,9 @@ "007527": { "id": "007527", "content": "求$(1+x)+(1+x)^2+(1+x)^3+\\cdots +(1+x)^{2n}$($n\\in \\mathbf{N}$)的展开式中念$x^n$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189643,7 +189891,9 @@ "007528": { "id": "007528", "content": "在$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^{100}$的展开式中, 有多少项是有理项?", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -189665,7 +189915,9 @@ "007529": { "id": "007529", "content": "求$(x^2+\\dfrac 1{x^2}-2)^3$展开式中含$x^2$项的表达式.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189689,7 +189941,9 @@ "007530": { "id": "007530", "content": "求$(1+x+x^2)(1-x)^{10}$展开式中含$x^4$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189713,7 +189967,9 @@ "007531": { "id": "007531", "content": "求$(ax+by+cz)^n$的展开式中含$x^py^qz^r$项的系数, 其中$p+q+r=n$($p,q,r,n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189735,7 +189991,9 @@ "007532": { "id": "007532", "content": "求$(x+\\dfrac 1x-1)^5$展开式中的常数项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189759,7 +190017,9 @@ "007533": { "id": "007533", "content": "求证: $4^n-4^{n-1}\\mathrm{C}_n^1+4^{n-2}\\mathrm{C}_n^2-4^{n-3}\\mathrm{C}_n^3+\\cdots +4(-1)^{n-1}\\mathrm{C}_n^{n-1}+(-1)^n\\mathrm{C}_n^n=3^n$($n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189781,7 +190041,9 @@ "007534": { "id": "007534", "content": "求证: $1-\\mathrm{C}_n^2+\\mathrm{C}_n^4-\\mathrm{C}_n^6+\\mathrm{C}_n^8-\\mathrm{C}_n^{10}+\\cdots =(\\sqrt 2)^n\\cos \\dfrac{n\\pi }4$,\n$\\mathrm{C}_n^1-\\mathrm{C}_n^3+\\mathrm{C}_n^5-\\mathrm{C}_n^7+\\mathrm{C}_n^9-\\mathrm{C}_n^{11}+\\cdots =(\\sqrt 2)^n\\sin \\dfrac{n\\pi }4$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189803,7 +190065,9 @@ "007535": { "id": "007535", "content": "求证: $\\mathrm{C}_n^1+2\\mathrm{C}_n^2+3\\mathrm{C}_n^3+\\cdots +n\\mathrm{C}_n^n=n\\cdot 2^{n-1}$($n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189825,7 +190089,9 @@ "007536": { "id": "007536", "content": "求证: $\\mathrm{C}_n^0+\\dfrac 12\\mathrm{C}_n^1+\\dfrac 13\\mathrm{C}_n^2+\\cdots +\\dfrac 1{n+1}\\mathrm{C}_n^n=\\dfrac 1{n+1}(2^{n+1}-1)$($n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189847,7 +190113,9 @@ "007537": { "id": "007537", "content": "求证$\\mathrm{C}_n^0\\mathrm{C}_n^1+\\mathrm{C}_n^1\\mathrm{C}_n^2+\\cdots +\\mathrm{C}_n^{n-1}\\mathrm{C}_n^n=\\dfrac{(2n)!}{(n-1)!(n+1)!}$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189871,7 +190139,9 @@ "007538": { "id": "007538", "content": "求证: $(\\mathrm{C}_n^0)^2+(\\mathrm{C}_n^1)^2+(\\mathrm{C}_n^2)^2+\\cdots +(\\mathrm{C}_n^n)^2=\\mathrm{C}_{2n}^n$($n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -189893,7 +190163,9 @@ "007539": { "id": "007539", "content": "求$53^{53}$除以$9$的余数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -189915,7 +190187,9 @@ "007540": { "id": "007540", "content": "求证: $n^{n-1}-1$能被$(n-1)^2$整除($n\\ge 3$, $n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -189937,7 +190211,9 @@ "007541": { "id": "007541", "content": "求证: $2<(1+\\dfrac 1n)^n<3$($n\\ge 2$, $n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -189959,7 +190235,9 @@ "007542": { "id": "007542", "content": "在$(a-b)^n$($n\\in \\mathbf{N}$)的展开式中, 笫$r$项的二项式系数为\\bracket{20}.\n\\fourch{$\\mathrm{C}_n^r$}{$\\mathrm{C}_n^{r-1}$}{$(-1)^r\\mathrm{C}_n^r$}{$(-1)^{r-1}\\mathrm{C}_n^{r-1}$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -189981,7 +190259,9 @@ "007543": { "id": "007543", "content": "$(\\sqrt 3i-x)^{10}$展开式的第$8$项是\\bracket{20}.\n\\fourch{$-360\\sqrt 3x^7i$}{$-135x^3$}{$360\\sqrt 3x^7i$}{$3240\\sqrt 3x^3i$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190003,7 +190283,9 @@ "007544": { "id": "007544", "content": "$(\\dfrac 1{\\sqrt 3}-\\sqrt[3]x)^{20}$的展开式中, 不含$x$的项是\\bracket{20}.\n\\fourch{第$11$项}{第$12$项}{第$13$项}{第$7$项或第$13$项}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190025,7 +190307,9 @@ "007545": { "id": "007545", "content": "若二项式$(\\sqrt[3]x-\\dfrac 2x)^n$展开式中第$8$项是含$\\sqrt[3]x$的项, 则自然数$n$的值等于\\bracket{20}.\n\\fourch{$27$}{$28$}{$29$}{$30$}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190047,7 +190331,9 @@ "007546": { "id": "007546", "content": "在$(1+x)^n$的二项展开式中, 若第$9$项的系数与第$13$项的系数相等, 则第$20$项的系数等于\\bracket{20}.\n\\fourch{$19$}{$20$}{$21$}{$22$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190069,7 +190355,9 @@ "007547": { "id": "007547", "content": "若$(1+x)^8$展开式的中间三项依次成等差数列, 则$x$的值等于\\bracket{20}.\n\\fourch{$\\dfrac 12$或$2$}{$\\dfrac 12$或$4$}{$2$或$4$}{$2$或$\\dfrac 14$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190091,7 +190379,9 @@ "007548": { "id": "007548", "content": "在$(x-1)^9$按$x$降幂排列的展开式中, 系数最大的项是\\bracket{20}.\n\\fourch{第$4$项和第$5$项}{第$5$项}{第$5$项和第$6$项}{第$6$项}", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -190113,7 +190403,10 @@ "007549": { "id": "007549", "content": "在$(x+\\dfrac 2{x^2})^n$的展开式中, 第3项为常数, 则中间项的表达式为\\bracket{20}.\n\\fourch{$60$}{$160x^{-3}$}{$672$}{$960x^{-3}$}", - "objs": [], + "objs": [ + "K0819002X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190135,7 +190428,9 @@ "007550": { "id": "007550", "content": "$(x+1)^4-4(x+1)^3+6(x+1)^2-4(x+1)+1$等于\\bracket{20}.\n\\fourch{$x^4$}{$-x^4$}{$1$}{$-1$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190157,7 +190452,9 @@ "007551": { "id": "007551", "content": "在$(x+y)^n$的展开式中, 若第$7$项的系数最大, 则$n$等于\\bracket{20}.\n\\fourch{$11, 12, 13$}{$13, 14$}{$11, 15$}{$12, 13$}", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -190179,7 +190476,9 @@ "007552": { "id": "007552", "content": "在$(x-\\dfrac 1x)^9$的展开式中, $x^3$的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190204,7 +190503,9 @@ "007553": { "id": "007553", "content": "在$(ax+1)^7$的展开式中, 若$x^3$的系数是$x^2$的系数与$x^4$的系数的等差中项, 且$a>1$, 则$a$的值等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190228,7 +190529,9 @@ "007554": { "id": "007554", "content": "在$(x+1+\\mathrm{i})^{10}$的展开式中, $x^6$的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190250,7 +190553,9 @@ "007555": { "id": "007555", "content": "若$a>0$, $n\\in \\mathbf{N}$, 且$(ax+1)^{2n}$和$(x+a)^{2n+1}$展开式的$x^n$的系数相等, 则$a$的収值范围是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190272,7 +190577,9 @@ "007556": { "id": "007556", "content": "$(\\sqrt x+\\sqrt [3]{x^2})^{12}$的展开式的第5项是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190294,7 +190601,9 @@ "007557": { "id": "007557", "content": "若二项式$(z-2)^6$展开式中的第$5$项是$-480$, 则复数$z$的值是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190316,7 +190625,9 @@ "007558": { "id": "007558", "content": "若$(x+\\dfrac 1x)^n$展开式中的第$3$项和第$7$项系数相等, 则系数的最大项是\\blank{50}.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -190338,7 +190649,9 @@ "007559": { "id": "007559", "content": "在$(\\sqrt[3]a-\\dfrac 1{\\sqrt a})^{15}$的展开式中, 不含$a$的项是第\\blank{50}项.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190360,7 +190673,9 @@ "007560": { "id": "007560", "content": "$(\\dfrac{\\sqrt x}3+\\dfrac 3{\\sqrt x})^{12}$展开式的中间一项等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190382,7 +190697,9 @@ "007561": { "id": "007561", "content": "$(2x^2+\\dfrac 1x)^{12}$展开式的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190404,7 +190721,9 @@ "007562": { "id": "007562", "content": "若$(\\dfrac 1{x\\sqrt[3]x}+x)^n$展开式中第$5, 6, 7$项的系数成等差数列, 则展开式中不含$x$的项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190426,7 +190745,9 @@ "007563": { "id": "007563", "content": "在$(\\sqrt[3]2+\\sqrt 3)^{12}$的展开式中, 有理项是第\\blank{50}项.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190448,7 +190769,9 @@ "007564": { "id": "007564", "content": "在$(1-3x)^{12}$的展开式中, 各项的二项式系数之和为\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190470,7 +190793,9 @@ "007565": { "id": "007565", "content": "在$(1-x)^9$的展开式中, $x$的奇次项系数之和等于\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190495,7 +190820,9 @@ "007566": { "id": "007566", "content": "若$(4x-1)^6=a_6x^6+a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$, 则$a_6+a_5+a_4+a_3+a_2+a_1+a_0$的值等于\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190517,7 +190844,9 @@ "007567": { "id": "007567", "content": "若$(1-2x)^6=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+a_6x^6$, 则$a_6-a_5+a_4-a_3+a_2-a_1$的值等于\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190539,7 +190868,9 @@ "007568": { "id": "007568", "content": "在$(2x-1)^5$的展开式中, 各项系数的绝对值之和等于\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190565,7 +190896,9 @@ "007569": { "id": "007569", "content": "在$(x+2y)(2x+y)^2(x+y)^3$的展开式中, 各项系数的和是\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190587,7 +190920,9 @@ "007570": { "id": "007570", "content": "$1+7\\mathrm{C}_n^1+7^2\\mathrm{C}_n^2+7^3\\mathrm{C}_n^3+\\cdots+7^n\\mathrm{C}_n^n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190609,7 +190944,9 @@ "007571": { "id": "007571", "content": "$1-2\\mathrm{C}_n^1+4\\mathrm{C}_n^2-\\cdots +(-2)^n\\mathrm{C}_n^n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190631,7 +190968,9 @@ "007572": { "id": "007572", "content": "$3+3^{n-1}\\mathrm{C}_n^1+3^{n-2}\\mathrm{C}_n^2+\\cdots +3\\mathrm{C}_n^{n-1}+\\mathrm{C}_n^n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190653,7 +190992,9 @@ "007573": { "id": "007573", "content": "$\\mathrm{C}_{21}^0-\\mathrm{C}_{21}^2+\\mathrm{C}_{21}^4-\\mathrm{C}_{21}^6+\\cdots +\\mathrm{C}_{21}^{16}-\\mathrm{C}_{21}^{18}+\\mathrm{C}_{21}^{20}=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190675,7 +191016,9 @@ "007574": { "id": "007574", "content": "若$(2x^2-\\dfrac 1{\\sqrt[3]x})^n$的展开式中含有非零常数项, 则正整数$n$的最小值是\\bracket{20}.\n\\fourch{$8$}{$6$}{$5$}{$4$}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190697,7 +191040,9 @@ "007575": { "id": "007575", "content": "在$(\\sqrt[5]3+\\sqrt[7]5)^{24}$的展开式中, 整数项是\\bracket{20}.\n\\fourch{第$12$项}{第$13$项}{第$14$项}{第$15$项}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190719,7 +191064,9 @@ "007576": { "id": "007576", "content": "在$(\\sqrt 3x+\\sqrt[3]2)^{100}$的展开式中, $x$的系数为有理数的项共有\\bracket{20}.\n\\fourch{$15$项}{$16$项}{$17$项}{$18$项}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190741,7 +191088,9 @@ "007577": { "id": "007577", "content": "在$(1-x)^n(1+x)^n$的展开式中, 若含$x^4$项的系数是$10$, 则自然数$n$的值等于\\bracket{20}.\n\\fourch{$3$}{$4$}{$5$}{$6$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190763,7 +191112,9 @@ "007578": { "id": "007578", "content": "在二项式$(1+x)^n$的展开式中, 若相邻两项的系数之比为$8:15$, 则$n$的最小值是\\bracket{20}.\n\\fourch{$21$}{$22$}{$23$}{$24$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190807,7 +191158,9 @@ "007580": { "id": "007580", "content": "在$(2-3x)^n$的展开式中, 各项系数之和是\\bracket{20}.\n\\twoch{$1$}{$n$为偶数时是$2$, $n$为奇数时是$-2$}{$-1$}{$n$为偶数时是$1$, $n$为奇数时是$-1$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190829,7 +191182,9 @@ "007581": { "id": "007581", "content": "在$(1+x)^3+(1+x)^4+\\cdots +(1+x)^{n+2}$的展开式中, 含$x^2$项的系数是\\bracket{20}.\n\\fourch{$\\mathrm{C}_{n+3}^3$}{$\\mathrm{C}_{n+3}^3-1$}{$\\mathrm{C}_{n+2}^3-1$}{$\\mathrm{C}_{n+2}^3$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190851,7 +191206,9 @@ "007582": { "id": "007582", "content": "$(a+b+c)^{10}$展开式的项数共有\\bracket{20}.\n\\fourch{$11$项}{$66$项}{$121$项}{$132$项}", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -190873,7 +191230,9 @@ "007583": { "id": "007583", "content": "在$(x+1)(2x+1)(3x+1)\\cdots (nx+1)$的展开式中, $x$的一次项的系数是\\bracket{20}.\n\\fourch{$\\mathrm{C}_n^1$}{$\\mathrm{C}_n^2$}{$\\mathrm{C}_{n+1}^1$}{$\\mathrm{C}_{n+1}^2$}", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -190895,7 +191254,9 @@ "007584": { "id": "007584", "content": "在$(1+x_1)(1+x_2)^2\\cdots (1+x_{n-1})^{n-1}(1+x_n)^n$展开式中, 各项系数之和是\\bracket{20}.\n\\fourch{$2^{n(n+1)}$}{$2^{\\frac{n(n+1)}2}$}{$2^{n+1}+2$}{$2(2^n-1)$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -190917,7 +191278,9 @@ "007585": { "id": "007585", "content": "$55^{55}$被$8$除所得的余数是\\bracket{20}.\n\\fourch{$7$}{$-7$}{$1$}{$-1$}", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -190939,7 +191302,9 @@ "007586": { "id": "007586", "content": "求$(x^2+\\dfrac 4{x^2}-4)^5$展开式中含$x^4$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190963,7 +191328,9 @@ "007587": { "id": "007587", "content": "求$(x^2+3x+2)^5$展开式中含$x$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -190988,7 +191355,9 @@ "007588": { "id": "007588", "content": "求$(1-x)^5(1+x+x^2)^4$展开式中含$x^7$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191010,7 +191379,9 @@ "007589": { "id": "007589", "content": "求$(x-2)^4(1+x)^5$展开式中含$x^6$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191035,7 +191406,9 @@ "007590": { "id": "007590", "content": "求$(x^2+x-2)^4$展开式中含$x^2$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191060,7 +191433,9 @@ "007591": { "id": "007591", "content": "求$(2\\sqrt x-\\dfrac 1{\\sqrt x})^6$展开式中, $x$的一次幂的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191082,7 +191457,9 @@ "007592": { "id": "007592", "content": "求$(x+y-3z)^8$的展开式中含$x^5yz^2$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191104,7 +191481,9 @@ "007593": { "id": "007593", "content": "求$(x+2y+z)^9$展开式中含$x^2y^3z^4$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191128,7 +191507,9 @@ "007594": { "id": "007594", "content": "求$(1-2x)^5(2+x)$展开式中含$x^3$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191150,7 +191531,9 @@ "007595": { "id": "007595", "content": "求$(1+x+x^2)(1-x)^{10}$展开式中含$x^4$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191174,7 +191557,9 @@ "007596": { "id": "007596", "content": "求$(1+x)^{2n}+x(1+x)^{2n-1}+x^2(1+x)^{2n-2}+\\cdots +x^n\\cdot (1+x)^n$展开式中含$x^n$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191196,7 +191581,9 @@ "007597": { "id": "007597", "content": "求$(x-1)-(x-1)^2+(x-1)^3-(x-1)^4+(x-1)^5$的展开式中含$x^2$项的系数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191218,7 +191605,9 @@ "007598": { "id": "007598", "content": "若$(x+x^{\\lg x})^5$的展开式的第$4$项为$10^6$, 求$x$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191240,7 +191629,9 @@ "007599": { "id": "007599", "content": "若$x(1-x)^4+x^2(1+2x)^k+x^3(1+3x)^{12}$的展开式中$x^4$的系数是$144$, 求$k$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191262,7 +191653,9 @@ "007600": { "id": "007600", "content": "若$(x^{\\lg x}+1)^n$展开式中最后$3$项的二项式系数的和是$22$, 而它的中间项是$20000$, 求$x$的值.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191284,7 +191677,9 @@ "007601": { "id": "007601", "content": "已知$(x\\sin \\alpha +1)^6$的展开式中$x^2$项的系数与$(x-\\dfrac{15}2\\cos \\alpha)^4$的展开式中$x^3$项的系数相等, 求$\\alpha$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191306,7 +191701,9 @@ "007602": { "id": "007602", "content": "已知$(a+b)^n$展开式的末$3$项系数之和为$22$, 又$(x^{\\lg x}-3)^n$展开式的中间项等于$-540000$, 求$x$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191328,7 +191725,9 @@ "007603": { "id": "007603", "content": "求$(|x|+\\dfrac 1{|x|}-2)^3$展开式中的常数项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191352,7 +191751,9 @@ "007604": { "id": "007604", "content": "求$[(1+\\log _3x)(1+\\log _x3)]^n$的展开式中不含$x$的项.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -191374,7 +191775,9 @@ "007605": { "id": "007605", "content": "已知$(\\sqrt x+\\dfrac 2{x^2})^n$展开式中的第$5$项系数与第$3$项系数之比是$56:3$, 求展开式中不含$x$的项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191396,7 +191799,9 @@ "007606": { "id": "007606", "content": "已知$(\\sqrt x+\\dfrac 1{2\\cdot \\sqrt[4]x})^n$展开式中前$3$项的系数依次成等差数列, 求展开式中所有的有理项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191418,7 +191823,9 @@ "007607": { "id": "007607", "content": "已知$(x\\cdot \\sqrt x-\\dfrac 1x)^6$展开式的第$5$项等于$\\dfrac{15}2$, 求$\\displaystyle\\lim_{n\\to\\infty} (x^{-1}+x^{-2}+\\cdots +x^{-n})$.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191442,7 +191849,10 @@ "007608": { "id": "007608", "content": "已知多项式$f(x)=(1+x)^m+(1+x)^n$($m\\in \\mathbf{N}$, $n\\in \\mathbf{N}$)的展开式中$x$项的系数为$19$.\\\\\n(1) 求$f(x)$中含$x^2$项的系数的最小值;\\\\\n(2) 对于使$f(x)$的$x^2$项的系数取最小值时的$m$, $n$, 求$f(x)$中含$x^7$的项.", - "objs": [], + "objs": [ + "K0819005X", + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -191464,7 +191874,9 @@ "007609": { "id": "007609", "content": "在$(x+1)(x+2)(x+3)\\cdots (x+10)$的展开式中, $7$的系数是多少? $x^8$的系数又是多少?", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191486,7 +191898,9 @@ "007610": { "id": "007610", "content": "求$(x+1)(x+2)(x+3)\\cdots (x+n)$展开式中含$x^{n-2}$项的系数.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191508,7 +191922,9 @@ "007611": { "id": "007611", "content": "求多项式$(x^2+x-1)^9(2x+1)^4$展开式中$x$的奇次项系数之和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191530,7 +191946,9 @@ "007612": { "id": "007612", "content": "求多项式$(x^2+2x+2)^{1993}+(x^2-3x-3)^{1993}$展开式中$x$的偶次项系数之和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191552,7 +191970,9 @@ "007613": { "id": "007613", "content": "求$(2-5x+2x^2)^5(2-x)^7$展开后各项系数的和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191574,7 +191994,9 @@ "007614": { "id": "007614", "content": "求$(x^3+2x+1)(5x^2+4)$展开后各项系数的和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191596,7 +192018,9 @@ "007615": { "id": "007615", "content": "已知$(1+x)^n$展开式中奇数项之和为$A$, 偶数项之和为$B$, 试证: $A^2-B^2=(1-x^2)^n$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191618,7 +192042,9 @@ "007616": { "id": "007616", "content": "若$(a+b)^n$展开式的所有奇数项的二项式系数之和为$1024$, 则展开式中间项的系数是\\bracket{20}.\n\\fourch{$330$}{$462$}{$682$}{$792$}", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191640,7 +192066,9 @@ "007617": { "id": "007617", "content": "在$(x-\\dfrac 1x)^n$的展开式中, 若奇数项的系数之和为32, 则含$x^2$项的系数是\\bracket{20}.\n\\fourch{$-20$}{$-15$}{$15$}{$20$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191662,7 +192090,9 @@ "007618": { "id": "007618", "content": "若$a$为常数, 则$\\displaystyle\\lim_{n\\to\\infty}\\dfrac{a+\\mathrm{C}_n^1+\\mathrm{C}_n^2+\\cdots +\\mathrm{C}_n^n}{2^n}$的值等于\\bracket{20}.\n\\fourch{$0$}{$\\dfrac 12$}{$1$}{$\\dfrac a2$}", - "objs": [], + "objs": [ + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -191684,7 +192114,9 @@ "007619": { "id": "007619", "content": "记$(1+2x)^n$展开式中各项系数和为$a_n$, 其二项式系数和为$b_n$, 则$\\displaystyle\\lim_{n\\to\\infty}\\dfrac{b_n-a_n}{b_n+a_n}$为\\bracket{20}.\n\\fourch{$1$}{$0$}{$-1$}{不存在}", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191706,7 +192138,9 @@ "007620": { "id": "007620", "content": "设$(1-2x)^8=a_0+a_1x+a_2x^2+\\cdots +a_8x^8$, 则$|a_0|+|a_1|+|a_2|+\\cdots +|a_8|$是\\bracket{20}.\n\\fourch{$-1$}{$1$}{$2^8$}{$3^8$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191728,7 +192162,9 @@ "007621": { "id": "007621", "content": "在$(x-1)^{11}$的展开式中, $x$的偶次幂项的系数和为\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191752,7 +192188,9 @@ "007622": { "id": "007622", "content": "若$2000<\\mathrm{C}_n^1+\\mathrm{C}_n^2+\\mathrm{C}_n^3+\\cdots +\\mathrm{C}_n^n<3000$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -191774,7 +192212,9 @@ "007623": { "id": "007623", "content": "若$x^4-3x^3+x^2+1=a(x+1)^4+b(x+1)^3+c(x+1)^2+d(x+1)+6$, 则$b=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191819,7 +192259,9 @@ "007625": { "id": "007625", "content": "设$(1+x)+(1+x)^2+(1+x)^3+\\cdots +(1+x)^n=b_0+b_1x+b_2x^2+\\cdots +b_nx^n$, 且$b_0+b_1+\\cdots +b_n=30$, 则自然数$n$的值等于\\bracket{20}.\n\\fourch{$4$}{$5$}{$6$}{$8$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191841,7 +192283,9 @@ "007626": { "id": "007626", "content": "在$(x^2+x-1)^{100}+(x^2-x-1)^{100}$的展开式中, $x$的偶次项系数之和为\\bracket{20}.\n\\fourch{$4$}{$5$}{$6$}{$8$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191863,7 +192307,9 @@ "007627": { "id": "007627", "content": "$\\mathrm{C}_n^0+2\\mathrm{C}_n^1+2^2\\mathrm{C}_n^2+\\cdots +2^n\\mathrm{C}_n^n$的值为\\bracket{20}.\n\\fourch{$2^n$}{$2^{n-1}$}{$3^n$}{$3^{n-1}$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191885,7 +192331,9 @@ "007628": { "id": "007628", "content": "$101^{10}-1$的末尾连续零的个数是\\bracket{20}.\n\\fourch{$1$}{$2$}{$3$}{$4$}", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -191907,7 +192355,9 @@ "007629": { "id": "007629", "content": "若$\\mathrm{C}_n^0(x+1)^n-\\mathrm{C}_n^1(x+1)^{n-1}+\\mathrm{C}_n^2(x+1)^{n-2}-\\cdots +(-1)^n\\mathrm{C}_n^n=a_0x^n+a_1x^{n-1}+\\cdots +a_{n-1}x+a_n$, 则$a_1+a_2+\\cdots +a_n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191929,7 +192379,9 @@ "007630": { "id": "007630", "content": "已知$x$为实数, $i$为虚数单位, 则$(1+ix)^{50}$展开式中实系数项的系数和为\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -191951,7 +192403,9 @@ "007631": { "id": "007631", "content": "设$a$是$\\sqrt 2$的整数部分, $b$是$\\sqrt 2$的小数部分, 则$(a-\\dfrac 1b)^6$展开式的中间项是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -191973,7 +192427,9 @@ "007632": { "id": "007632", "content": "设$(2x+x^{\\lg x})^n$展开式各项的二项式系数之和为$256$, 且二项式系数最大项的值为$1120$, 求$x$.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -191995,7 +192451,10 @@ "007633": { "id": "007633", "content": "已知$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^n$展开式系数之和比$(a+b)^{2n}$展开式的系数之和小240, 求$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^n$展开式中系数最大的项.", - "objs": [], + "objs": [ + "K0820001X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -192061,7 +192520,9 @@ "007636": { "id": "007636", "content": "求和: $\\mathrm{C}_{100}^0+4\\mathrm{C}_{100}^1+7\\mathrm{C}_{100}^2+\\cdots +(3n-2)\\mathrm{C}_{100}^{n-1}+\\cdots +298\\mathrm{C}_{100}^{99}+301\\mathrm{C}_{100}^{100}$($n\\in \\mathbf{N}$, $1\\le n\\le 101$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192083,7 +192544,9 @@ "007637": { "id": "007637", "content": "设$a_0, a_1, a_2, \\cdots,a_n$是等差数列, 求证: $a_0+\\mathrm{C}_n^1a_1+\\mathrm{C}_n^2a_2+\\cdots +\\mathrm{C}_n^na_n=(a_0+a_n)\\cdot 2^{n-1}$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192105,7 +192568,9 @@ "007638": { "id": "007638", "content": "若$n$为奇数, 求$7^n+\\mathrm{C}_n^1\\cdot 7^{n-1}+\\mathrm{C}_n^2\\cdot 7^{n-2}+\\mathrm{C}_n^37^{n-3}+\\cdots +\\mathrm{C}_n^{n-2}\\cdot 7^2+\\mathrm{C}_n^{n-1}\\cdot 7$被$9$除所得的余数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192127,7 +192592,9 @@ "007639": { "id": "007639", "content": "求$47^{13}$被$5$除的余数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192149,7 +192616,9 @@ "007640": { "id": "007640", "content": "求$91^{92}$除以$8$所得的余数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192171,7 +192640,9 @@ "007641": { "id": "007641", "content": "求证: $3^{2n}-8n-1$($n\\in \\mathbf{N}$)能被$64$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192195,7 +192666,9 @@ "007642": { "id": "007642", "content": "求证: 数列$65,65\\times 66, 65\\times 66^2, 65\\times 66^3, \\cdots, 65\\times 66^{48}, 65\\times 66^{49}$之和必能被$67$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192217,7 +192690,9 @@ "007643": { "id": "007643", "content": "已知$2^{n+2}\\times 3^n+5n-a$($n\\in \\mathbf{N}$)能被$25$整除, 求$a$的最小正值.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192239,7 +192714,9 @@ "007644": { "id": "007644", "content": "求$x^{10}-3$除以$(x-1)^2$所得的余式.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192261,7 +192738,9 @@ "007645": { "id": "007645", "content": "求证: 当$n\\ge 3$, $n\\in \\mathbf{N}$时, $n^{n-1}-1$能被$(n-1)^2$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -192283,7 +192762,9 @@ "007646": { "id": "007646", "content": "设$(x-2)^8=a_8x^8+a_7x^7+\\cdots +a_1x+a_0$, 求$a_8+a_6+a_4+a_2$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192305,7 +192786,9 @@ "007647": { "id": "007647", "content": "求$(1-x)+(1-x)^2+(1-x)^3+\\cdots +(1-x)^n$展开式中所有奇次项系数的和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192327,7 +192810,9 @@ "007648": { "id": "007648", "content": "已知$(3-x)^n=a_0+a_1x+a_2x^2+a_3x^3+\\cdots +a_nx^n$, 求$a_1+2a_2+2^2a_3+\\cdots +2^{n-1}a_n$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192349,7 +192834,9 @@ "007649": { "id": "007649", "content": "求证: $\\mathrm{C}_n^0\\mathrm{C}_n^1+\\mathrm{C}_n^1\\mathrm{C}_n^2+\\cdots +\\mathrm{C}_n^{n-1}\\mathrm{C}_n^n=\\dfrac{(2n)!}{(n-1)!(n+1)!}$.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192373,7 +192860,9 @@ "007650": { "id": "007650", "content": "求证: $\\mathrm{C}_n^0\\mathrm{C}_m^p+\\mathrm{C}_n^1\\mathrm{C}_m^{p-1}+\\cdots +\\mathrm{C}_n^p\\mathrm{C}_m^0=\\mathrm{C}_{m-n}^p$($p\\le m,n$).", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192395,7 +192884,9 @@ "007651": { "id": "007651", "content": "利用$k\\mathrm{C}_n^k=n\\mathrm{C}_{n-1}^{k-1}$, 求证: $\\mathrm{C}_n^1+2\\mathrm{C}_n^2+3\\mathrm{C}_n^3+\\cdots +n\\mathrm{C}_n^n=n\\cdot 2^{n-1}$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192420,7 +192911,9 @@ "007652": { "id": "007652", "content": "利用$k\\mathrm{C}_n^k=n\\mathrm{C}_{n-1}^{k-1}$, 求证: $\\mathrm{C}_n^1-2\\mathrm{C}_n^2+3\\mathrm{C}_n^3+\\cdots +(-1)^{n-1}n\\mathrm{C}_n^n=0$($n\\ge 2$, $n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192444,7 +192937,9 @@ "007653": { "id": "007653", "content": "利用$k\\mathrm{C}_n^k=n\\mathrm{C}_{n-1}^{k-1}$, 求证: $\\mathrm{C}_n^0+2\\mathrm{C}_n^1+3\\mathrm{C}_n^2+\\cdots +(n+1)\\mathrm{C}_n^n=(n+2)\\cdot 2^{n-1}$.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192468,7 +192963,9 @@ "007654": { "id": "007654", "content": "已知$n\\in \\mathbf{N}$, $n\\ge 2$, 求证: $2^n>1+2+\\cdots +n$.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192490,7 +192987,9 @@ "007655": { "id": "007655", "content": "求证: $3^n>2^{n-1}(n+2)$($n>2$, $n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192512,7 +193011,9 @@ "007656": { "id": "007656", "content": "已知正数$a,b,c$满足$a+b+c=abc$, 求证: $a^n+b^n+c^n>3(1+\\dfrac n2)$($n\\in \\mathbf{N}$).", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192534,7 +193035,9 @@ "007657": { "id": "007657", "content": "利用数学归纳法证明: $(\\dfrac n2)^n>n!$($n\\in \\mathbf{N}$且$n\\ge 6$).", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -192556,7 +193059,9 @@ "007658": { "id": "007658", "content": "已知$\\mathrm{C}_{18}^n=\\mathrm{C}_{18}^{n+2}$, $4\\mathrm{P}_m^2=\\mathrm{P}_{m+1}^4$, 求$(1+\\sqrt m\\mathrm{i})^n$展开式中所有实数项的和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192578,7 +193083,9 @@ "007659": { "id": "007659", "content": "若实数$x,y$满足$x+y=1$, 求证: $x^5+y^5\\ge \\dfrac 1{16}$.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -192600,7 +193107,9 @@ "007660": { "id": "007660", "content": "已知: $|x|<1$, $n\\in \\mathbf{N}$, $n\\ge 2$, 求证: $(1-x)^n+(1+x)^n<2^n$.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -192622,7 +193131,9 @@ "007661": { "id": "007661", "content": "计算: $\\mathrm{C}_{21}^0-\\mathrm{C}_{21}^2+\\mathrm{C}_{21}^4-\\mathrm{C}_{21}^6+\\mathrm{C}_{21}^8-\\mathrm{C}_{21}^{10}+\\mathrm{C}_{21}^{12}-\\mathrm{C}_{21}^{14}+\\mathrm{C}_{21}^{16}-\\mathrm{C}_{21}^{18}+\\mathrm{C}_{21}^{20}$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192644,7 +193155,9 @@ "007662": { "id": "007662", "content": "求证: $1+\\mathrm{C}_n^1\\cos \\alpha +\\mathrm{C}_n^2\\cos 2\\alpha +\\cdots +\\mathrm{C}_n^n\\cos n\\alpha =2^n\\cos ^n(\\dfrac{\\alpha }2)\\cdot \\cos \\dfrac{n\\alpha }2$,\n$\\mathrm{C}_n^1\\sin \\alpha +\\mathrm{C}_n^2\\sin 2\\alpha +\\cdots +\\mathrm{C}_n^n\\sin n\\alpha =2^n\\cos ^n(\\dfrac{\\alpha }2)\\sin \\dfrac{n\\alpha }2$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192666,7 +193179,9 @@ "007663": { "id": "007663", "content": "设$a_n=1+q+q^2+\\cdots +q^{n-1}$($n\\in \\mathbf{N}$, $q\\ne \\pm 1$), $A_n=a_1\\mathrm{C}_n^1+a_2\\mathrm{C}_n^2+\\cdots +a_n\\mathrm{C}_n^n$.\\\\\n(1) 用$q,n$表示$A_n$;\\\\\n(2) 当$-3\\dfrac 1{10}$, 试比较$A_n$和$B_n$的大小, 并证明你的结论.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -192953,7 +193470,9 @@ "007676": { "id": "007676", "content": "设$(1+x+x^2)^n=a_0+a_1x+a_2x^2+\\cdots +a_{2n}x^{2n}$, 求$a_0+a_2+a_4+\\cdots +a_{2n}$的值.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192975,7 +193494,9 @@ "007677": { "id": "007677", "content": "求$(\\sqrt x+2)^{2n+1}$的展开式中$x$的整数次幂的各项系数之和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -192997,7 +193518,9 @@ "007678": { "id": "007678", "content": "求$(1+i)^{4k-2}$($k\\in \\mathbf{N}$)展开式中奇数项之和.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -193019,7 +193542,9 @@ "007679": { "id": "007679", "content": "求证: $(3+\\sqrt 7)^n$($n\\in \\mathbf{N}$, $n\\ge 2$)的整数部分为奇数.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231052,7 +231577,9 @@ "009303": { "id": "009303", "content": "用二项式定理展开下列两式:\\\\\n(1) $(a+2b)^6$;\\\\\n(2) $(1-\\dfrac 1x)^5$.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231074,7 +231601,9 @@ "009304": { "id": "009304", "content": "化简:\\\\\n(1) $(1+\\sqrt x)^5+(1-\\sqrt x)^5$;\\\\\n(2) $(2x+y)^4-(2x-y)^4$.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231096,7 +231625,9 @@ "009305": { "id": "009305", "content": "(1) 求$(x-1)^{15}$的二项展开式中的前$4$项;\\\\\n(2) 求$(2a^3-3b^2)^{10}$的二项展开式中的第$8$项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231118,7 +231649,9 @@ "009306": { "id": "009306", "content": "求下列各式的二项展开式中指定的项的系数:\\\\\n(1) $(1-\\dfrac 1{2x})^{10}$二项展开式中含$\\dfrac 1{x^4}$的项;\\\\\n(2) $(3x^3-\\dfrac 1{3x^3})^{10}$的二项展开式中的常数项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231140,7 +231673,9 @@ "009307": { "id": "009307", "content": "在$(3x-2y)^9$的展开式中, 求二项式系数的和以及各项系数的和.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -231162,7 +231697,9 @@ "009308": { "id": "009308", "content": "(1) 用二项式定理证明: $(n+1)^n-1$能被$n^2$整除;\\\\\n(2) 用二项式定理证明: $99^{10}-1$能被$1000$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -231184,7 +231721,9 @@ "009309": { "id": "009309", "content": "已知$(1+x)^n$的二项展开式中第$4$项与第$8$项的二项系数相等, 求这两项的二项式系数.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -231206,7 +231745,9 @@ "009310": { "id": "009310", "content": "求证: $2^n-\\mathrm{C}_n^1\\cdot 2^{n-1}+\\mathrm{C}_n^2\\cdot 2^{n-2}+\\cdots +\\mathrm{C}_n^{n-1}\\cdot 2+(-1)^n=1$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -231228,7 +231769,9 @@ "009311": { "id": "009311", "content": "$\\mathrm{C}_n^1+3\\mathrm{C}_n^2+9\\mathrm{C}_n^3+\\cdots +3^{n-1}\\mathrm{C}_n^n$等于\\bracket{20}.\n\\fourch{$4^n$}{$\\dfrac{4^n}3$}{$\\dfrac{4^n}3-1$}{$\\dfrac{4^n-1}3$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231250,7 +231793,9 @@ "009312": { "id": "009312", "content": "已知$n$为大于$1$的自然数, 证明: $(1+\\dfrac 1n)^n>2$.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -231272,7 +231817,9 @@ "009313": { "id": "009313", "content": "在$(x^2-\\dfrac 3x)^n$的二项展开式中, 有且只有第五项的二项式系数最大, 求$\\mathrm{C}_n^0-\\dfrac 12\\mathrm{C}_n^1+\\dfrac 14\\mathrm{C}_n^2-\\cdots +(-1)^n\\cdot \\dfrac 12\\mathrm{C}_n^n$.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -231294,7 +231841,9 @@ "009314": { "id": "009314", "content": "选择题:\n$\\mathrm{C}_{100}^0-\\mathrm{C}_{100}^2+\\mathrm{C}_{100}^4-\\cdots +\\mathrm{C}_{100}^{98}+\\mathrm{C}_{100}^{100}$等于\\bracket{20}.\n\\fourch{$-2^{50}$}{$0$}{$1$}{$2^{50}$}", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -231316,7 +231865,9 @@ "009315": { "id": "009315", "content": "求$(\\dfrac{\\sqrt x}2-\\dfrac 2{\\sqrt x})^{10}$的二项展开式的中间一项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231338,7 +231889,9 @@ "009316": { "id": "009316", "content": "求$(x\\sqrt y-y\\sqrt x)^{11}$的二项展开式的中间两项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231360,7 +231913,9 @@ "009317": { "id": "009317", "content": "在$(1+3x)^n$的二项展开式中, 末三项的二项式系数之和等于$631$.\\\\\n(1) 求二项展开式中二项式系数最大的项是第几项;\\\\\n(2) 求二项展开式中系数最大的项.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -231382,7 +231937,9 @@ "009318": { "id": "009318", "content": "求$77^{77}-15$除以$19$的余数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -231406,7 +231963,9 @@ "009319": { "id": "009319", "content": "求证: $2^{6n-3}+3^{2n-1}$能被$11$整除.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -231428,7 +231987,9 @@ "009320": { "id": "009320", "content": "已知$(x+1)^n=x^n+\\cdots +ax^3+bx^2+cx+1$($n\\in \\mathbf{N}^*$), 且$a:b=3:1$, 求$c$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231538,7 +232099,9 @@ "009325": { "id": "009325", "content": "$(x^2-\\dfrac 1{2\\sqrt x})^3$的二项展开式的第$3$项是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231671,7 +232234,9 @@ "009331": { "id": "009331", "content": "$(x-1)^n$的二项展开式中第$m$项($m\\le n$, $n\\in \\mathbf{N}^*$)的二项式的系数是\\bracket{20}.\n\\fourch{$\\mathrm{C}_n^{m-1}$}{$(-1)^{m-1}\\mathrm{C}_n^m$}{$\\mathrm{C}_n^m$}{$(-1)^m\\mathrm{C}_n^m$}", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -231737,7 +232302,9 @@ "009334": { "id": "009334", "content": "已知$(x\\sin \\theta +1)^6$的二项展开式$x^2$项的系数与$(x-\\dfrac{15}2\\cos \\theta)^4$的二项展开式中$x^3$项的系数相等, 求$\\cos \\theta$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -231847,7 +232414,9 @@ "009339": { "id": "009339", "content": "若$(1+\\sqrt x)^n$的展开式的系数和大于$8$且小于$32$, 则系数最大的项是\\blank{50}.", - "objs": [], + "objs": [ + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -231935,7 +232504,9 @@ "009343": { "id": "009343", "content": "求$\\mathrm{C}_{10}^1+2\\mathrm{C}_{10}^2+4\\mathrm{C}_{10}^3+\\cdots +2^9\\mathrm{C}_{10}^{10}$的值.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -231957,7 +232528,9 @@ "009344": { "id": "009344", "content": "已知$(2^{\\lg x}-1)^n$的二项展开式中, 最后三项的二项式系数和等于$22$, 中间项为$-1280$, 求$x$的值.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -233367,7 +233940,9 @@ "009407": { "id": "009407", "content": "已知$(x\\sqrt x-\\dfrac 1x)^6$的二项展开式的第$5$项为$\\dfrac{15}2$, 求$\\displaystyle\\lim_{n\\to\\infty}(x^{-1}+x^{-2}+\\cdots +x^{-n}) $的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -233391,7 +233966,9 @@ "009408": { "id": "009408", "content": "设$n\\in \\mathbf{N}^*$, 求证: $\\mathrm{C}_n^1+\\mathrm{C}_n^2+\\cdots +\\mathrm{C}_n^n=1+2+2^2+\\cdots +2^{n-1}$.", - "objs": [], + "objs": [ + "K0820002X" + ], "tags": [ "第八单元", "二项式定理" @@ -233461,7 +234038,9 @@ "009411": { "id": "009411", "content": "求$(1.009)^5$的近似值\\blank{50}(结果精确到$0.001$).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -233636,7 +234215,9 @@ "009419": { "id": "009419", "content": "利用二项式定理证明: $3^n>2^{n-1}(n+2)$($n\\in \\mathbf{N}^*$, $n\\ge 2$).", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -233683,7 +234264,9 @@ "009421": { "id": "009421", "content": "已知$(\\sqrt[3]x-\\dfrac 1{\\sqrt x})^n$的二项展开式中, 第三项与第二项的二项式系数之比为$11:2$ , 求正整数$n$及二项展开式中的所有的有理项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -233705,7 +234288,9 @@ "009422": { "id": "009422", "content": "已知$(x^{\\lg x}+1)^n$的二项展开式中, 求三项的二项式系数的和为22. 二项式系数最大的项为20000, 求实数$x$的值.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -246011,7 +246596,9 @@ "009945": { "id": "009945", "content": "(1) 求$(x-\\sqrt2y)^8$的二项展开式;\\\\\n(2) 求$(x-x^{-\\frac 13})^{12}$的二项展开式中的常数项;\\\\\n(3) 求$(x-\\dfrac 2x)^9$的二项展开式中$x^3$的系数;\\\\\n(4) 在$(1-x^2)^{20}$的二项展开式中, 如果第$4r$项和第$r+2$项的系数的绝对值相等, 求此展开式的第$4r$项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -246033,7 +246620,9 @@ "009946": { "id": "009946", "content": "利用二项式定理证明: $7^{100}-1$是$8$的倍数.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -246055,7 +246644,9 @@ "009947": { "id": "009947", "content": "(1) 若$(1-x)^6=a_0+a_1x+a_2x^2+\\cdots+a_6x^6$, 求$a_0+a_1+a_2+\\cdots+a_6$的值;\\\\\n(2) 已知$(x+1)^n=a_0+a_1(x-1)+a_2(x-1)^2+a_3(x-1)^3+\\cdots+a_n(x-1)^n$($n\\ge 2$, $n$为正整数), 求$a_0+a_1+a_2+\\cdots+a_n$的值.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理" @@ -246077,7 +246668,9 @@ "009948": { "id": "009948", "content": "(1) 求$(1+2x)^7$的二项展开式中系数最大的项;\\\\\n(2) 求$(1-2x)^7$的二项展开式中系数最大的项.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -246999,7 +247592,9 @@ "009990": { "id": "009990", "content": "二项式$(3+x)^n$的展开式中, $x^2$项的系数是常数项的$5$倍, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819006X" + ], "tags": [ "第八单元", "二项式定理" @@ -267096,7 +267691,7 @@ "objs": [], "tags": [ "第八单元", - "二项式定理" + "加法原理与乘法原理" ], "genre": "解答题", "ans": "", @@ -267932,7 +268527,10 @@ "010875": { "id": "010875", "content": "求$(2x^2-\\dfrac 1x)^6$的二项展开式中的中间项.", - "objs": [], + "objs": [ + "K0819002X", + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -267954,7 +268552,9 @@ "010876": { "id": "010876", "content": "求$(x+\\dfrac 1x)^{10}$的二项展开式中的常数项.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -267976,7 +268576,9 @@ "010877": { "id": "010877", "content": "在$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^{24}$的二项展开式中, $x$的幂指数是负数的项一共有多少个?", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -267998,7 +268600,9 @@ "010878": { "id": "010878", "content": "求$(x+\\dfrac 12)^8$的二项展开式中系数最大的项.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -268020,7 +268624,9 @@ "010879": { "id": "010879", "content": "已知$x>0$, 且$(x+\\dfrac 1{x^3})^9$的二项展开式中, 第二项不大于第三项. 求实数$x$的取值范围.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -268042,7 +268648,9 @@ "010880": { "id": "010880", "content": "已知$(1+x)^{10}=a_0+a_1(1-x)+a_2(1-x)^2+\\cdots+a_{10}(1-x)^{10}$, 求$a_8$的值.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -268064,7 +268672,9 @@ "010881": { "id": "010881", "content": "求$(3-2x)^9$的二项展开式中系数最大的项.", - "objs": [], + "objs": [ + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -268086,7 +268696,9 @@ "010882": { "id": "010882", "content": "设$f(x)=(1+x)^m+(1+x)^n$($m$、$n$为正整数). 若二项展开式中关于$x$的一次项系数之和为$11$, 则当$m$、$n$为何值时, 含$x^2$项的系数取得最小值?", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -268108,7 +268720,9 @@ "010883": { "id": "010883", "content": "在$(1+x)^n$的二项展开式中, 设奇数项之和为$A$, 偶数项之和为$B$. 求证: $A^2-B^2=(1-x^2)^n$.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -270922,7 +271536,9 @@ "010990": { "id": "010990", "content": "在$(1-2x)^6$的二项展开式中, $x^3$项的系数为\\blank{50}. (用数字作答)", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -271812,7 +272428,9 @@ "011030": { "id": "011030", "content": "已知$(2x^2-\\dfrac 1x)^n$($n\\in \\mathbf{N}^*)$的展开式中各项的二项式系数之和为$128$, 则其展开式中含$\\dfrac 1x$项的系数是\\blank{50}.(结果用数值表示)", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -272382,7 +273000,9 @@ "011054": { "id": "011054", "content": "已知二项式$(2x+\\dfrac 1x)^6$, 则其展开式中的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -274428,7 +275048,9 @@ "011137": { "id": "011137", "content": "二项式$(x-\\dfrac 1x)^6$的展开式中的常数项为\\blank{50}. (用数字作答)", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -276496,7 +277118,9 @@ "011226": { "id": "011226", "content": "若$(x-\\dfrac ax)^9$的展开式中$x^3$的系数是$-84$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -277437,7 +278061,9 @@ "011269": { "id": "011269", "content": "若$(ax^2+\\dfrac 1{\\sqrt x})^{5}$的展开式中的常数项为$-\\dfrac 5{2}$, 则实数$a$的值为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -277959,7 +278585,9 @@ "011293": { "id": "011293", "content": "设$n\\in \\mathbf{N}^*$, 若$(2+\\sqrt x)^n$的二项展开式中, 有理项的系数之和为$365$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -278287,7 +278915,9 @@ "011308": { "id": "011308", "content": "已知二项式$(x^2+\\dfrac ax)^6$的展开式中含$x^3$项的系数是$160$, 则实数$a$的值是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -278989,7 +279619,9 @@ "011340": { "id": "011340", "content": "在$(\\sqrt x+\\dfrac 2{x^2})^n$($n\\in \\mathbf{N}^*$)的展开式中, 设含有$(\\sqrt x)^{n-r}(\\dfrac 2{x^2})^r$的项为第$r+1$($0\\le r\\le n$, $n\\in \\mathbf{N}$)项. 若第$3$项与第$5$项的系数之比为$3:56$, 则展开式中的常数项为\\bracket{20}.\n\\fourch{$180$}{$160$}{$120$}{$100$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -279137,7 +279769,9 @@ "011347": { "id": "011347", "content": "$(x^2+\\dfrac 1x)^8$的展开式中$x^4$项的系数是\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -279610,7 +280244,9 @@ "011369": { "id": "011369", "content": "$(x+\\dfrac 1x)^n$的展开式中的第$3$项为常数项, 则正整数$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819002X" + ], "tags": [ "第八单元", "二项式定理" @@ -280242,7 +280878,9 @@ "011396": { "id": "011396", "content": "$(1+\\dfrac 1{x^2})(1+x)^6$展开式中$x^2$项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -280663,7 +281301,9 @@ "011415": { "id": "011415", "content": "在$(1-2x)^{6}$的二项展开式中, $x^{3}$项的系数为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -281265,7 +281905,9 @@ "011442": { "id": "011442", "content": "设$n\\in \\mathbf{N}^*$, $a_n$为$(x+2)^n-(x+1)^n$的展开式的各项系数之和, $m=-\\dfrac 12t+6$, , $b_n=[\\dfrac{a_1}3]+[\\dfrac{2a_2}{3^2}]+...+[\\dfrac{na_n}{3^n}]$($[x]$表示不超过实数$x$的最大整数), 则当$n$和$t$变动时, $(n-t)^2+(b_n-m)^2$的最小值为\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "第四单元", @@ -281660,7 +282302,9 @@ "011459": { "id": "011459", "content": "在$(x^2+\\dfrac 2x)^6$的二项展开式中, 常数项等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -282523,7 +283167,9 @@ "011498": { "id": "011498", "content": "已知二项式$(2x+\\dfrac 1x)^6$, 则其展开式中的常数项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -283200,7 +283846,9 @@ "011528": { "id": "011528", "content": "在$(\\dfrac 2x-x)^6$的二项展开式中, 常数项等于\\bracket{20}.\n\\fourch{$-160$}{$160$}{$-150$}{$150$}", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -285460,7 +286108,9 @@ "011628": { "id": "011628", "content": "在$(x-\\dfrac 2x)^6$的二项展开式中, 常数项等于\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -285982,7 +286632,9 @@ "011651": { "id": "011651", "content": "设常数$a\\in \\mathbf{R}$, 若$(x^2+\\dfrac ax)^5$的二项展开式中$x^7$项的系数为$-10$, 则$a=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -287117,7 +287769,9 @@ "011703": { "id": "011703", "content": "在$(1+x+\\dfrac 1{x^{2015}})^{10}$的展开式中, $x^2$项的系数为\\blank{50}(结果用数值表示).", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -287546,7 +288200,9 @@ "011723": { "id": "011723", "content": "在$(\\sqrt[3]x-\\dfrac 2x)^n$的二项式中, 所有项的二项式系数之和为$256$, 则常数项等于\\blank{50}.", - "objs": [], + "objs": [ + "KNONE" + ], "tags": [ "第八单元", "二项式定理" @@ -293357,7 +294013,9 @@ "011993": { "id": "011993", "content": "$(1+x)^n$的二项展开式中, 若第9项与第13项系数相等, 则第20项为\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -293809,7 +294467,9 @@ "012011": { "id": "012011", "content": "$(1+2x)^5=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5$, 则$a_3=$\\blank{50}.", - "objs": [], + "objs": [ + "K0819005X" + ], "tags": [ "第八单元", "二项式定理" @@ -294232,7 +294892,10 @@ "012026": { "id": "012026", "content": "已知代数式$(\\dfrac 2m+\\dfrac mx)^n$($m>0$,$x>0$).\\\\\n(1) 当$m=2$, $n=6$时, 求二项展开式中二项式系数最大的项;\\\\\n(2) 若$(\\dfrac 2m+\\dfrac mx)^{10}=a_0+\\dfrac{a_1}x+\\dfrac{a_2}{x^2}+\\cdots +\\dfrac{a_{10}}{x^{10}}$, 且$a_2=180$, 求$a_i$($0\\le i \\le 10$,$i\\in \\mathbf{N}$)的最大值.", - "objs": [], + "objs": [ + "K0819005X", + "K0820003X" + ], "tags": [ "第八单元", "二项式定理" @@ -303578,7 +304241,9 @@ "030071": { "id": "030071", "content": "已知$(a+3b)^n$的展开式中, 各项系数的和为$2^{n+6}$, 则$n=$\\blank{50}.", - "objs": [], + "objs": [ + "K0820001X" + ], "tags": [ "第八单元", "二项式定理"