添加题目19284, 与11821关联
This commit is contained in:
parent
0d8a1b1d81
commit
0384e5d6ca
|
|
@ -312315,7 +312315,9 @@
|
||||||
"20220901\t王伟叶"
|
"20220901\t王伟叶"
|
||||||
],
|
],
|
||||||
"same": [],
|
"same": [],
|
||||||
"related": [],
|
"related": [
|
||||||
|
"019284"
|
||||||
|
],
|
||||||
"remark": "",
|
"remark": "",
|
||||||
"space": "",
|
"space": "",
|
||||||
"unrelated": []
|
"unrelated": []
|
||||||
|
|
@ -493945,6 +493947,31 @@
|
||||||
"space": "4em",
|
"space": "4em",
|
||||||
"unrelated": []
|
"unrelated": []
|
||||||
},
|
},
|
||||||
|
"019284": {
|
||||||
|
"id": "019284",
|
||||||
|
"content": "设$a_1,a_2,b_1,b_2,c_1,c_2$均为非零实数, 关于$x$的方程$a_1x^2+b_1x+c_1=0$与$a_2x^2+b_2x+c_2=0$的解集分别为$M$和$N$, 那么``$\\dfrac{a_1}{a_2}=\\dfrac{b_1}{b_2}=\\dfrac{c_1}{c_2}$''是``$M=N$''的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分又非必要条件}",
|
||||||
|
"objs": [],
|
||||||
|
"tags": [
|
||||||
|
"第一单元"
|
||||||
|
],
|
||||||
|
"genre": "",
|
||||||
|
"ans": "",
|
||||||
|
"solution": "",
|
||||||
|
"duration": -1,
|
||||||
|
"usages": [],
|
||||||
|
"origin": "空中课堂必修第一册例题与习题-20230726修改",
|
||||||
|
"edit": [
|
||||||
|
"20220901\t王伟叶",
|
||||||
|
"20230726\t赵琍琍"
|
||||||
|
],
|
||||||
|
"same": [],
|
||||||
|
"related": [
|
||||||
|
"011821"
|
||||||
|
],
|
||||||
|
"remark": "",
|
||||||
|
"space": "",
|
||||||
|
"unrelated": []
|
||||||
|
},
|
||||||
"020001": {
|
"020001": {
|
||||||
"id": "020001",
|
"id": "020001",
|
||||||
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",
|
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",
|
||||||
|
|
|
||||||
Reference in New Issue