添加K0401的基础知识梳理
This commit is contained in:
parent
f32e23967b
commit
04b467cdea
|
|
@ -500,5 +500,34 @@
|
||||||
"K0207003B"
|
"K0207003B"
|
||||||
],
|
],
|
||||||
"content": "请依次作出幂函数 $y=x^{\\frac{1}{2}}$, $y=x^3$, $y=x^{-\\frac{2}{3}}$ 的大致图像.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
|
"content": "请依次作出幂函数 $y=x^{\\frac{1}{2}}$, $y=x^3$, $y=x^{-\\frac{2}{3}}$ 的大致图像.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
|
||||||
|
},
|
||||||
|
"B00071": {
|
||||||
|
"lesson": "K0401",
|
||||||
|
"objs": [
|
||||||
|
"K0401002X"
|
||||||
|
],
|
||||||
|
"content": "若数列$\\{a_n\\}$从第二项起, 每一项与其前一项的差都等于同一个常数$d$, 这个数列就叫做等差数列, 这个常数叫做等差数列的\\blank{50}.($a_n-a_{n-1}=d$, $n\\ge 2$)"
|
||||||
|
},
|
||||||
|
"B00072": {
|
||||||
|
"lesson": "K0401",
|
||||||
|
"objs": [
|
||||||
|
"K0401002X"
|
||||||
|
],
|
||||||
|
"content": "$a,b,c$成等差数列$\\Leftrightarrow b$是$a,c$的\\blank{100} $\\Leftrightarrow$ $b=$\\blank{50}."
|
||||||
|
},
|
||||||
|
"B00073": {
|
||||||
|
"lesson": "K0401",
|
||||||
|
"objs": [
|
||||||
|
"K0401003X",
|
||||||
|
"K0401004X"
|
||||||
|
],
|
||||||
|
"content": "数列$\\{a_n\\}$是以$a_1$为首项, $d$为公差的等差数列, 它的通项公式是\\blank{100}."
|
||||||
|
},
|
||||||
|
"B00074": {
|
||||||
|
"lesson": "K0401",
|
||||||
|
"objs": [
|
||||||
|
"K0401004X"
|
||||||
|
],
|
||||||
|
"content": "数列$\\{a_n\\}$是等差数列, 正整数$m,n,p,q$满足$m+n=p+q$, 那么$a_m+a_n=$\\blank{50}."
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Reference in New Issue