diff --git a/工具/文本文件/metadata.txt b/工具/文本文件/metadata.txt index 57dcb846..c86e945f 100644 --- a/工具/文本文件/metadata.txt +++ b/工具/文本文件/metadata.txt @@ -1,434 +1,4302 @@ -usages +ans -22127 -20230329 2025届高一10班 0.962 +021441 +错误, 正确, 错误, 错误 -22128 -20230329 2025届高一10班 0.846 -22129 -20230329 2025届高一10班 0.654 +021442 +D -22130 -20230329 2025届高一10班 0.808 -22131 -20230329 2025届高一10班 0.769 +021443 +C -22132 -20230329 2025届高一10班 0.654 -22133 -20230329 2025届高一10班 0.846 +021444 +A -22134 -20230329 2025届高一10班 0.423 -22135 -20230329 2025届高一10班 0.154 +021445 +C -22136 -20230329 2025届高一10班 0.385 -22137 -20230329 2025届高一10班 0.862 0.700 +021446 +D -22138 -20230329 2025届高一10班 0.100 -22127 -20230329 2025届高一11班 0.968 +021447 +$-390^\circ$ -22128 -20230329 2025届高一11班 1.000 -22129 -20230329 2025届高一11班 0.710 +021448 +$304^\circ$, $-56^\circ$ -22130 -20230329 2025届高一11班 0.935 -22131 -20230329 2025届高一11班 0.935 +021449 +$-144^\circ$ -22132 -20230329 2025届高一11班 0.710 -22133 -20230329 2025届高一11班 0.968 +021450 +二, 四 -22134 -20230329 2025届高一11班 0.484 -22135 -20230329 2025届高一11班 0.452 +021451 +(1) $\{\alpha|\alpha=60^\circ+k\cdot 360^\circ, \ k\in \mathbf{Z}\}$, $-300^\circ$, $60^\circ$, $420^\circ$; (2) $\{\alpha|\alpha = -21^\circ+k\cdot 360^\circ, \ k \in \mathbf{Z}\}$, $-21^\circ$, $339^\circ$, $699^\circ$ -22136 -20230329 2025届高一11班 0.613 -22137 -20230329 2025届高一11班 0.916 0.813 +021452 +\begin{tikzpicture}[>=latex] +\fill [pattern = north east lines] (30:2) arc (30:60:2) -- (0,0) -- cycle; +\draw (30:2) -- (0,0) -- (60:2); +\draw [->] (-2,0) -- (2,0) node [below] {$x$}; +\draw [->] (0,-2) -- (0,2) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\end{tikzpicture} -22138 -20230329 2025届高一11班 0.194 -22127 -20230329 2025届高一12班 1.000 +021453 +$-1290^{\circ}$;第二象限 -22128 -20230329 2025届高一12班 0.963 -22129 -20230329 2025届高一12班 0.667 +021454 +(1) $ \{\alpha|\alpha=45^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(2) $\{\alpha|\alpha=135^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(3) $\{\alpha|\alpha=45^{\circ}+k\cdot 90^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(4) $\{\alpha|180^{\circ}+k\cdot 360^{\circ}<\alpha<270^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$. -22130 -20230329 2025届高一12班 0.852 -22131 -20230329 2025届高一12班 0.963 +021455 +(1) $ \{\beta|\beta=\alpha+180^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(2) $\{\beta|\beta=\alpha+90^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(3) $\{\beta|\beta=-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ +(4) $\{\beta|\beta=90^{\circ}-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$. -22132 -20230329 2025届高一12班 0.444 -22133 -20230329 2025届高一12班 0.889 +021456 +C -22134 -20230329 2025届高一12班 0.481 -22135 -20230329 2025届高一12班 0.296 +021457 +B -22136 -20230329 2025届高一12班 0.481 -22137 -20230329 2025届高一12班 0.985 0.607 +021458 +$\dfrac{\pi}{12}$; $\dfrac{7\pi}{12}$; $\dfrac{5\pi}{4}$; $300^{\circ}$; $324^{\circ}$; $315^{\circ}$; $(\dfrac{270}{\pi})^{\circ}$ -22138 -20230329 2025届高一12班 0.200 -22127 -20230329 2025届高一01班 1.000 +021459 +(1)$\frac{50\pi+180}{9}$;(2)$\frac{250\pi}{9}$ -22128 -20230329 2025届高一01班 1.000 -22129 -20230329 2025届高一01班 0.795 +021460 +$\sqrt{3}$ -22130 -20230329 2025届高一01班 0.949 -22131 -20230329 2025届高一01班 0.949 +021461 +(1)$\frac{\pi}{3}$;(2)$\frac{2\pi}{3}$ -22132 -20230329 2025届高一01班 0.872 -22133 -20230329 2025届高一01班 0.949 +021462 +(1)$16\pi+\frac{2\pi}{3}$,二;\\ +(2)$-18\pi+\frac{4\pi}{3}$,三;\\ +(3)$-2\pi+\frac{7\pi}{5}$,三;\\ +(4)$-2\pi+\frac{3\pi}{4}$,二. -22134 -20230329 2025届高一01班 0.590 -22135 -20230329 2025届高一01班 0.436 +021463 +$\frac{1}{2}$ -22136 -20230329 2025届高一01班 0.718 -22137 -20230329 2025届高一01班 0.985 0.800 +021464 +(1) $\{\alpha|-\frac{\pi}{2}+2k\pi<\alpha<2k\pi,\ k \in \mathbf{Z}\}$;\\ +(2) $\{\alpha|\alpha=\frac{k\pi}{2},\ k \in \mathbf{Z}\}$. -22138 -20230329 2025届高一01班 0.272 -22127 -20230329 2025届高一02班 0.975 +021465 +(1) $\beta=\alpha+2k\pi,\ k \in \mathbf{Z}$;\\ +(2) $\beta=-\alpha+2k\pi,\ k \in \mathbf{Z}$;\\ +(3) $\beta=-\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$;\\ +(4) $\beta=\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$. -22128 -20230329 2025届高一02班 1.000 -22129 -20230329 2025届高一02班 0.875 +021466 +(1) $\{\alpha|-\frac{\pi}{4}+2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\ +(2) $\{\alpha|\frac{\pi}{6}+k\pi \le \alpha \le \frac{5\pi}{6}+k\pi,\ k \in \mathbf{Z}\}$. -22130 -20230329 2025届高一02班 1.000 -22131 -20230329 2025届高一02班 0.975 +021467 +(1) 第四象限;第四象限;\\ +(2) 第二象限或者第四象限;第一象限或第二象限或者$y$轴正半轴. -22132 -20230329 2025届高一02班 0.800 -22133 -20230329 2025届高一02班 0.975 +021468 +$A\cap B=\{\alpha | 2k \pi+\dfrac{5\pi}{6}<\alpha<2k \pi+\dfrac{7\pi}{6},\ k \in \mathbf{Z} \}$ -22134 -20230329 2025届高一02班 0.750 -22135 -20230329 2025届高一02班 0.575 +021469 +\begin{tabular}{|c|c|c|c|c|c|} +\hline &$P(-5,12)$&$P(0,-6)$&$P(6,0)$&$P(-9,-12)$&$P(1,-\sqrt{3})$\\ +\hline$\sin \alpha$&$\dfrac{12}{13}$ &$-1$ & $0$&$-\dfrac{4}{5}$ &$-\dfrac{\sqrt{3}}2$ \\ +\hline$\cos \alpha$&$-\dfrac{5}{13}$ &$0$ & $1$&$-\dfrac{3}{5}$ &$\dfrac 12$ \\ +\hline$\tan \alpha$&$-\dfrac{12}{5}$ &不存在 & $0$&$\dfrac{4}{3}$ &$-\sqrt{3}$ \\ +\hline$\cot \alpha$&$-\dfrac{5}{12}$ &$0$ & 不存在 &$\dfrac {3}{4}$ &$-\dfrac{\sqrt{3}}3$ \\ +\hline +\end{tabular} -22136 -20230329 2025届高一02班 0.875 -22137 -20230329 2025届高一02班 0.955 0.795 +021470 +$2\sqrt{5}$ -22138 -20230329 2025届高一02班 0.345 -22127 -20230329 2025届高一03班 0.971 +021471 +$\frac{2\sqrt{13}}{13}$;$-\frac{2}{3}$ -22128 -20230329 2025届高一03班 0.971 -22129 -20230329 2025届高一03班 0.794 +021472 +$ \left( -2,\frac{2}{3} \right)$ -22130 -20230329 2025届高一03班 0.912 -22131 -20230329 2025届高一03班 0.912 +021473 +$<$ -22132 -20230329 2025届高一03班 0.588 -22133 -20230329 2025届高一03班 0.971 +021474 +5 -22134 -20230329 2025届高一03班 0.471 -22135 -20230329 2025届高一03班 0.176 +021475 +2 -22136 -20230329 2025届高一03班 0.706 -22137 -20230329 2025届高一03班 0.912 0.871 +021476 +当$t=\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha =- \frac{\sqrt{15}}{3}$;\\ +当$t=-\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha = \frac{\sqrt{15}}{3}$;\\ +当$t=0$时, $\cos \alpha=-1$, $\tan \alpha = 0$. -22138 -20230329 2025届高一03班 0.253 -22127 -20230329 2025届高一04班 0.971 +021477 +当$\alpha$在第二象限时,$ \sin \alpha =\frac{4}{5}$, $\tan \alpha=-\frac{4}{3}$;\\ +当$\alpha$在第三象限时,$ \sin \alpha =-\frac{4}{5}$, $\tan \alpha=\frac{4}{3}$. -22128 -20230329 2025届高一04班 1.000 -22129 -20230329 2025届高一04班 0.600 +021478 +$-\frac{\sqrt{3}}{4}$ -22130 -20230329 2025届高一04班 0.857 -22131 -20230329 2025届高一04班 0.886 +021479 +(1) 第四象限; (2) 第一、四象限;(3)第一、三象限;(4)第一、三象限. -22132 -20230329 2025届高一04班 0.743 -22133 -20230329 2025届高一04班 0.943 +021480 +$A=\left\{ -2,-0,4 \right\}$ -22134 -20230329 2025届高一04班 0.400 -22135 -20230329 2025届高一04班 0.429 +021481 +(1) $\{\alpha|2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\ +(2) $[0,3)$ -22136 -20230329 2025届高一04班 0.771 -22137 -20230329 2025届高一04班 0.863 0.789 +021482 +\begin{center} +\begin{tabular}{|c|c|c|c|c|c|} +\hline$\alpha$&$\dfrac{\pi}{3}$&$\dfrac{7 \pi}{4}$&$\dfrac{2021 \pi}{2}$&$-\dfrac{\pi}{6}$&$-\dfrac{22 \pi}{3}$\\ +\hline$\sin \alpha$& $\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{2}}{2}$ & $1$&$-\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ \\ +\hline$\cos \alpha$&$\frac{1}{2}$ &$\frac{\sqrt{2}}{2}$ & $0$&$\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ \\ +\hline$\tan \alpha$&$\sqrt{3}$ &$-1$ & 不存在 &$-\frac{\sqrt{3}}{3}$ &$-\sqrt{3}$\\ +\hline$\cot \alpha$&$\frac{\sqrt{3}}{3}$ &$-1$ & $ 0$&$-\sqrt{3}$ &$-\frac{\sqrt{3}}{3}$ \\ +\hline +\end{tabular} +\end{center} -22138 -20230329 2025届高一04班 0.177 -22127 -20230329 2025届高一05班 0.935 +021483 +(1) $\{x|x=\frac{4\pi}{3}+2k \pi$或$ x=\frac{5\pi}{3}+2k \pi,\ k \in \mathbf{Z} \}$;\\ +(2) $\{-\frac{2\pi}{3},-\frac{\pi}{3},\frac{4\pi}{3} ,\frac{5\pi}{3},\frac{10\pi}{3},\frac{11\pi}{3} \}$ -22128 -20230329 2025届高一05班 0.935 -22129 -20230329 2025届高一05班 0.806 +021484 +$-\frac{2\sqrt{5}}{5}$;$2$ -22130 -20230329 2025届高一05班 0.903 -22131 -20230329 2025届高一05班 0.871 +021485 +\textcircled{2} \textcircled{4} -22132 -20230329 2025届高一05班 0.774 -22133 -20230329 2025届高一05班 1.000 +021486 +当$\alpha$在第一象限时,$ \sin \alpha =\frac{3\sqrt{10}}{10}$, $\cos \alpha =\frac{\sqrt{10}}{10}$,$\tan \alpha=3$;\\ +当$\alpha$在第三象限时,$ \sin \alpha =-\frac{3\sqrt{10}}{10}$,$\cos \alpha =-\frac{\sqrt{10}}{10}$, $\tan \alpha=3$. -22134 -20230329 2025届高一05班 0.548 -22135 -20230329 2025届高一05班 0.258 +021487 +$\sin k\pi =0$; $\cos k\pi=\begin{cases}1, & k=2n, \\ -1, & k=2n-1\end{cases}$($n \in \mathbf{Z}$). -22136 -20230329 2025届高一05班 0.323 -22137 -20230329 2025届高一05班 0.929 0.671 +021488 +(1) $\{\theta | 2k \pi+\dfrac{\pi}{3}<\theta<2k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$;\\ +(2) $\{\theta | k \pi-\dfrac{\pi}{2}<\theta \le k \pi-\dfrac{\pi}{6},\ k \in \mathbf{Z} \}$;\\ +(3) $\{\theta | k \pi+\dfrac{\pi}{3} \le \theta \le k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$. -22138 -20230329 2025届高一05班 0.103 -22127 -20230329 2025届高一06班 0.930 +021489 +第二象限 -22128 -20230329 2025届高一06班 1.000 -22129 -20230329 2025届高一06班 0.791 +021490 +(1) 当$\dfrac{\alpha}{2}$在第二象限时,点$P$在第四象限;\\ +当$\dfrac{\alpha}{2}$在第四象限时,点$P$在第二象限.\\ +(2) $\sin (\cos \alpha) \cdot \cos (\sin \alpha)<0$ -22130 -20230329 2025届高一06班 0.930 -22131 -20230329 2025届高一06班 0.954 +021491 +当$m=0$时,$ \cos (\alpha+1905^{\circ})=-1$,$\tan (\alpha-615^{\circ})=0$;\\ +当$m=\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=-\frac{\sqrt{15}}{3}$;\\ +当$m=-\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=\frac{\sqrt{15}}{3}$. -22132 -20230329 2025届高一06班 0.698 -22133 -20230329 2025届高一06班 0.930 +021492 +$-\dfrac{3}{8}$ -22134 -20230329 2025届高一06班 0.395 -22135 -20230329 2025届高一06班 0.302 +021493 +$-\dfrac{1}{20}$ -22136 -20230329 2025届高一06班 0.651 -22137 -20230329 2025届高一06班 0.884 0.819 +021494 +$\dfrac{7\sqrt{2}}{4}$ -22138 -20230329 2025届高一06班 0.140 -22127 -20230329 2025届高一07班 0.954 +021495 +$\dfrac{3\sqrt{5}}{5}$ -22128 -20230329 2025届高一07班 0.977 -22129 -20230329 2025届高一07班 0.581 +021496 +$11$ -22130 -20230329 2025届高一07班 0.907 -22131 -20230329 2025届高一07班 0.814 +021497 +$5$;$-\dfrac{12}{5}$;$\dfrac{4}{9}$ -22132 -20230329 2025届高一07班 0.628 -22133 -20230329 2025届高一07班 0.954 +021498 +$\sin ^2 \alpha$ -22134 -20230329 2025届高一07班 0.535 -22135 -20230329 2025届高一07班 0.279 +021499 +$1$ -22136 -20230329 2025届高一07班 0.535 -22137 -20230329 2025届高一07班 0.940 0.600 +021500 +证明略 -22138 -20230329 2025届高一07班 0.181 -22127 -20230329 2025届高一08班 0.864 +021501 +证明略 -22128 -20230329 2025届高一08班 1.000 -22129 -20230329 2025届高一08班 0.682 +021502 +$-\dfrac{12}{5}$ -22130 -20230329 2025届高一08班 0.909 -22131 -20230329 2025届高一08班 0.909 +021503 +$-\dfrac{\sqrt{3}}{2}$ -22132 -20230329 2025届高一08班 0.773 -22133 -20230329 2025届高一08班 0.955 +021504 +$\dfrac{\sqrt{7}}{2}$;$\dfrac{\sqrt{7}}{4}$ -22134 -20230329 2025届高一08班 0.545 -22135 -20230329 2025届高一08班 0.136 +021505 +$-\dfrac{\sqrt{11}}{3}$ -22136 -20230329 2025届高一08班 0.636 -22137 -20230329 2025届高一08班 0.927 0.554 +021506 +$\dfrac{\pi}{3}$ -22138 -20230329 2025届高一08班 0.164 -22127 -20230329 2025届高一09班 0.957 +021507 +$\left[ 0,\pi \right )$ -22128 -20230329 2025届高一09班 1.000 -22129 -20230329 2025届高一09班 0.478 +021508 +$-\dfrac{\sqrt{3}}{2}$;$-\dfrac{\sqrt{2}}{2}$;$-\sqrt{3}$;$-\sqrt{3}$ -22130 -20230329 2025届高一09班 1.000 -22131 -20230329 2025届高一09班 0.739 +021509 +$69^{\circ}$;$72^{\circ}$;$\dfrac{\pi}{9}$;$\dfrac{7 \pi}{15}$ -22132 -20230329 2025届高一09班 0.739 -22133 -20230329 2025届高一09班 0.870 +021510 +$\cot \alpha$ -22134 -20230329 2025届高一09班 0.304 -22135 -20230329 2025届高一09班 0.130 +021511 +$-1$ -22136 -20230329 2025届高一09班 0.304 -22137 -20230329 2025届高一09班 0.948 0.687 +021512 +$-1$ + + +021513 +$ \sin 2-\cos 2$ + + +021514 +$0$ + + +021515 +$0$ + + +021516 +$-\dfrac{\sqrt{1-a^2}}{a}$ + + +021517 +$-\dfrac{2+\sqrt{3}}{3}$ + + +021518 +(1) $\dfrac{\sqrt{3}}{2}$;(2) $\dfrac{1}{4}$. + + +021519 +(1) $-\dfrac{2}{3}$; \\ +(2) $\dfrac{2}{3}$; \\ +(3) $-\dfrac{\sqrt{5}}{3}$;\\ +(4) $\dfrac{\sqrt{5}}{2}$. + + +021520 +(1) $\sin 69^{\circ}$ ; (2) $-\cos 8^{\circ}$ ; +(3) $-\tan \dfrac{\pi}{9}$; (4) $\cot \dfrac{7\pi}{15}$. + + +021521 +$\dfrac{2}{5}$ + + +021522 +$(3,4)$ + + +021523 +$0$ + + +021524 +$\sin \alpha$ + + +021525 +$-\dfrac{1}{5}$ + + +021526 +(1) $\dfrac{\sqrt{6}}{6}-\sqrt{3}$;\\ +(2) $-\dfrac{\sqrt{6}}{3}$;\\ +(3) $1$ + + +021527 +(1) $\dfrac{6 \pi}{5}$; (2) $\dfrac{4 \pi}{5}$; (3) $\dfrac{13 \pi}{10}$; (4) $\dfrac{17 \pi}{10}$. + + +021528 +(1) 当$\alpha$在第一象限时, $\sin (2 \pi-\alpha)=-\dfrac{\sqrt{3}}{2}$; +当$\alpha$在第三象限时, $\sin (2 \pi-\alpha)=\dfrac{\sqrt{3}}{2}$.\\ +(2) 当$\alpha$在第一象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=-\sqrt{3}$; +当$\alpha$在第四象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=\sqrt{3}$. + + +021529 +(1) $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\ +(2) $\{x | x=2k \pi \pm \dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\ +(3) $\{x | x=k \pi + \dfrac{5\pi}{6},\ k \in \mathbf{Z}\}$;\\ +(4) $\{x | x=2k \pi + \dfrac{5\pi}{6}$ 或$x=2k \pi + \dfrac{3\pi}{2} ,\ k \in \mathbf{Z}\}$;\\ +第二种写法: $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{6}+\dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\ +(5) $\{x | x=k \pi - \arctan \dfrac{\sqrt{3}}{2}+ \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\ +(6) $\{x | x=\dfrac{2k \pi}{5} + \dfrac{7\pi}{60}$ 或$ x=\dfrac{2k \pi}{5} - \dfrac{13\pi}{60} ,\ k \in \mathbf{Z}\}$;\\ +(7) $\{x | x=k \pi - \dfrac{5\pi}{8}$ 或$x=k \pi - \dfrac{3\pi}{8} ,\ k \in \mathbf{Z}\}$; + + +021530 +(1) $\{ \dfrac{\pi}{12},\dfrac{17\pi}{12} \}$;\\ +(2) $\{ \dfrac{5\pi}{6} \}$;\\ +(3) $\{ \dfrac{\pi}{12},\dfrac{5\pi}{12} \}$;\\ +(4) $\{ \dfrac{5\pi}{6} \}$. + + +021531 +(1) $\{x | x= \dfrac{2k \pi}{5} ,\ k \in \mathbf{Z}\}$;\\ +(2) $\{x | x= \dfrac{2k \pi}{3} +\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\ +(3) $\{x | x= 2k \pi$ 或$x=k \pi +(-1)^k \cdot \dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\ +(4) $\{x | x= k \pi+\dfrac{ \pi}{3}$ 或$x=k \pi -\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$. + + +021532 +$\dfrac{3+4\sqrt{3}}{10}$ + + +021533 +$-1$ + + +021534 +$-\dfrac{33}{50}$ + + +021535 +(1) $\dfrac{\sqrt{6}-\sqrt{2}}{4}$; +(2) $\dfrac{\sqrt{6}+\sqrt{2}}{4}$; +(3) $0$. + + +021536 +(1) $\sqrt{3} \sin \alpha$; +(2) $\cos(\alpha-2\beta)$. + + +021537 +$\dfrac{140}{221}$ + + +021538 +$\dfrac{2\sqrt{6}-1}{6}$ + + +021539 +证明略 + + +021540 +C + + +021541 +A + + +021542 +$\dfrac{3\sqrt{10}+6\sqrt{2}+2\sqrt{14}-\sqrt{70}}{24}$ + + +021543 +$\dfrac{8\sqrt{3}-21}{20}$ + + +021544 +$\dfrac{\pi}{2}$ + + +021545 +$-\dfrac{2+\sqrt{15}}{6}$ + + +021546 +$-\dfrac{\sqrt{2}}{2}$ + + +021547 +$\sin 2\beta$ + + +021548 +$0$ + + +021549 +$2-\sqrt{3}$ + + +021550 +$\dfrac{16}{65}$ + + +021551 +$-\dfrac{7}{25}$ + + +021552 +$-\dfrac{4\sqrt{14}+3\sqrt{2}}{20}$ + + +021553 +$(\dfrac{4\sqrt{3}+3}{2},\dfrac{3\sqrt{3}-4}{2})$ + + +021554 +$-\dfrac{33}{65}$或$\dfrac{63}{65}$ + + +021555 +B + + +021556 +C + + +021557 +$-\dfrac{56}{65}$ + + +021558 +$-3$ + + +021559 +$\dfrac{3}{4}$ + + +021560 +$\dfrac{-6+5\sqrt{3}}{3}$ + + +021561 +$\tan \alpha$ + + +021562 +$\sqrt{3}$ + + +021563 +$-\dfrac{\sqrt{3}}{3}$ + + +021564 +A + + +021565 +$-\dfrac{17}{31}$ + + +021566 +$\dfrac{\pi}{4}$ + + +021567 +(1) $\dfrac{1}{3}$; +(2) $\dfrac{1}{7}$ + + +021568 +$-\dfrac{1}{5}$ + + +021569 +当$CD = 1.4$米时,$\tan \angle ACB$最大 + + +021570 +(1) $2 \sin (\alpha+\dfrac{\pi}{6})$; +(2) $\sqrt{2} \sin (\alpha+\dfrac{7\pi}{4})$. + + +021571 +$6\cos(\alpha+\dfrac{\pi}{3})$ + + +021572 +$2k \pi-\dfrac{\pi}{3}(k\in \mathbf{Z} )$ + + +021573 +B + + +021574 +$\dfrac{1}{3}$ + + +021575 +$\dfrac{\pi}{12}$或$\dfrac{5\pi}{12}$ + + +021576 +$5$ + + +021577 +$\dfrac{13}{3}$ + + +021578 +$-\dfrac{p}{1+q}$ + + +021579 +$\dfrac{3}{5}$ + + +021580 +$\dfrac{24}{7}$ + + +021581 +$-\dfrac{24}{25}$ + + +021582 +$-\dfrac{15}{17}$ + + +021583 +$\sin 2 \varphi=\dfrac{4\sqrt{2}}{9}$; +$\cos 2 \varphi=-\dfrac{7}{9}$; +$\tan 2 \varphi=-\dfrac{4\sqrt{2}}{7}$. + + +021584 +$\dfrac{24}{25}$; $\dfrac{7}{25}$; $\dfrac{24}{7}$ + + +021585 +(1) $-\dfrac{\sqrt{3}}{3}$;\\ +(2) $\dfrac{3}{4}$. + + +021586 +$\dfrac{7}{24}$ + + +021587 +$-\dfrac{2\sqrt{10}}{5}$ + + +021588 +$1$ + + +021589 +证明略 + + +021590 +$1$或$\dfrac{7}{25}$ + + +021591 +$-\dfrac{\sqrt{2-2a}}{2}$ + + +021592 +第三象限 + + +021593 +当$\dfrac{\theta}{2}$在第二象限时, +$\sin \dfrac{\theta}{2}=\dfrac{\sqrt{3}}{3}$, +$\cos \dfrac{\theta}{2}=-\dfrac{\sqrt{6}}{3}$, +$\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$;\\ +当$\dfrac{\theta}{2}$在第四象限时, +$\sin \dfrac{\theta}{2}=-\dfrac{\sqrt{3}}{3}$, +$\cos \dfrac{\theta}{2}=\dfrac{\sqrt{6}}{3}$, +$\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$. + + +021594 +$\dfrac{3}{5}$;$\dfrac{4}{5}$ + + +021595 +证明略 + + +021596 +$\dfrac{2}{3}$ + + +021597 +$\cos \alpha-\sin \alpha$ + + +021598 +$\sin \dfrac{ \alpha}{2}$ + + +021599 +(1) $\tan \dfrac{\theta}{2}$; (2) $\sin \alpha$. + + +021600 +$\dfrac{\sqrt{6}}{2}$ + + +021601 +$30^{\circ}$或$90^{\circ}$ + + +021602 +$\sqrt{6}$ + + +021603 +$55$ + + +021604 +$\dfrac{\pi}{3}$或$\dfrac{2\pi}{3}$ + + +021605 +$1: \sqrt{3}: 2$ + + +021606 +$2$ + + +021607 +$\dfrac{5}{8}$ + + +021608 +等腰 + + +021609 +$\dfrac{3\sqrt{2}}{2}$ + + +021610 +$\sqrt{3}$ + + +021611 +$\dfrac{7\pi}{12}$ + + +021612 +$\dfrac{2\pi}{3}$ + + +021613 +(1) $\left( 0,9 \right)$; \\ +(2) $\{9\} \cup \left[18,+ \infty \right)$;\\ +(3) $\left( 9,18 \right)$. + + +021614 +$\dfrac{3\sqrt{7}}{8}$ + + +021615 +$\sqrt{17}$或$\sqrt{65}$ + + +021616 +$\dfrac{\pi}{4}$ + + +021617 +\textcircled{1};\textcircled{2} + + +021618 +$a>3$ + + +021619 +$a=\sqrt{21}$和$\sin B=\dfrac{5\sqrt{7}}{14}$ + + +021620 +$\dfrac{2\pi}{3}$ + + +021621 +$c=\sqrt{6}+\sqrt{2}$;$C=75^\circ$. + + +021622 +$\dfrac{\sqrt{19}}{2}$ + + +021623 +周长的最小值为$12$,此时三角形为正三角形;\\ +面积最大值为$4\sqrt{3}$,此时三角形为正三角形. + + +021624 +$\dfrac{\sqrt{5}}{5}$ + + +021625 +$\dfrac{2\sqrt{5}}{5}$或$-\dfrac{2\sqrt{5}}{25}$ + + +021626 +$\dfrac{\sqrt{5}}{5}$或$\dfrac{11\sqrt{5}}{25}$ + + +021627 +$\left ( 2,2\sqrt{2} \right )$ + + +021628 +(1) 以$C$为直角的直角三角形;\\ +(2) 以$A$为顶角的等腰三角形;\\ +(3) 以$A$为直角的直角三角形. + + +021629 +$a=\sqrt{13}$;$R=\dfrac{\sqrt{39}}{3}$. + + +021630 +$6\sqrt{19}$ + + +021631 +(1) $x=\arcsin \dfrac{2}{5}$或$\pi-\arcsin \dfrac{2}{5}$;\\ +(2) $x=\pi-\arccos \dfrac{2}{3}$或$\pi+\arccos \dfrac{2}{3}$;\\ +(3) $x=k\pi- \arctan \dfrac{1}{2},k \in \mathbf{Z}$. + + +021632 +$300\sqrt{3}$ + + +021633 +证明略 + + +021634 +$\theta=\dfrac{\pi}{12}$;塔高为$1.5$千米. + + +021635 +$64.81$米 + + +021636 +(1) $3.9$千米;(2) $4.0$千米. + + +021637 +$2.4$千米 + + +021638 +$\dfrac{\pi}{2}$ + + +021639 +B + + +021640 +(1) \begin{tikzpicture}[>=latex, scale = 0.7] +\draw [->] (-4,0) -- (4,0) node [below] {$x$}; +\draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (-pi,0.1) -- (-pi,0) node [below left] {$-\pi$}; +\draw (-0.5*pi,0.1) -- (-0.5*pi,0) node [below] {$-\frac{\pi}{2}$}; +\draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$}; +\draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; +\draw (0.1,1) -- (0,1) node [left] {$1$}; +\draw (0.1,-1) -- (0,-1) node [left] {$-1$}; +\draw [domain = -pi:pi,samples = 100] plot (\x,{sin(\x/pi*180)+1}); +\end{tikzpicture}\\ +(2) \begin{tikzpicture}[>=latex, scale = 0.7] +\draw [->] (0,0) -- (7,0) node [below] {$x$}; +\draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (pi/2,0.1) -- (pi/2,0) node [below] {$\frac{\pi}{2}$}; +\draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; +\draw (1.5*pi,0.1) -- (1.5*pi,0) node [below] {$\frac{3\pi}{2}$}; +\draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$}; +\draw (0.1,1) -- (0,1) node [left] {$1$}; +\draw (0.1,-1) -- (0,-1) node [left] {$-1$}; +\draw [domain = 0:2*pi,samples = 100] plot (\x,{-cos(\x/pi*180)}); +\end{tikzpicture} + + +021641 +(1) 定义域为$\left \{x|x \neq-\dfrac{\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$;\\ +(2) 定义域为$\left \{x|\dfrac{\pi}{2}+2k\pi \leq x \leq \dfrac{3\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$. + + +021642 +$\left \{x|\dfrac{\pi}{6} \leq x \leq \dfrac{5\pi}{6},k \in \mathbf{Z} \right \}$ + + +021643 +$2\pi$ + + +021644 +C + + +021645 +C + + +021646 +(1) 当$a \in (-\infty,-\dfrac{\sqrt{2}}{2})\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\ +当$a \in [-\dfrac{\sqrt{2}}{2},0)\cup \{1\}$ 时,方程实数解个数为$1$个;\\ +当$a \in [0,1)$时,方程实数解个数为$2$个.\\ +(2) 当$a \in (-\infty,-1)\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\ +当$a \in (0,1]$时,方程实数解个数为$1$个;\\ +当$a \in \{0,-1\}$时,方程实数解个数为$2$个;\\ +当$a \in (-1,0)$时,方程实数解个数为$3$个. + + +021647 +(1) $8\pi$; +(2) $\pi$;(3) $\pi$;(4) $2\pi$. + + +021648 +$3$ + + +021649 +A + + +021650 +C + + +021651 +(1) 假;(1) 假;(3) 真. + + +021652 +D + + +021653 +(1) $\pi$; (2) $\pi$; (3) $\dfrac{\pi}{2}$; (4) $\dfrac{\pi}{|a|}$. + + +021654 +$4\sin(\dfrac{\pi x}{2})-2$ + + +021655 +B + + +021656 +A + + +021657 +(1) $f(3)=-1$; $f(5)=1$; $f(7)=-1$;\\ +(2) $T=4$. + + +021658 +$\left [2,4\right] $ + + +021659 +$\left [-2,2\right] $ + + +021660 +$ [-\dfrac{3}{2},3] $ + + +021661 +$ (-\dfrac{\sqrt{3}}{2},1] $ + + +021662 +$3$; $\left \{x|x=-\dfrac{\pi}{2}+2k\pi,k \in \mathbf{Z} \right\}$ + + +021663 +$-3$; $\left \{x|x=-\dfrac{\pi}{12}+k\pi,k \in \mathbf{Z} \right\}$ + + +021664 +当$x=\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \mathbf{Z}$时,函数的最大值为$\sqrt{13}$;\\ +当$x=-\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \mathbf{Z}$时,函数的最小值为$-\sqrt{13}$. + + +021665 +D + + +021666 +C + + +021667 +当$\alpha=\dfrac{\pi}{2}-\theta$时,竹竿的影子最长,最长为$\dfrac{\sin(\alpha+\theta)}{\sin \theta}*l$. + + +021668 +$[-1,1]$ + + +021669 +$\{x|x\neq 2k\pi,k \in \mathbf{Z}\}$;$(-\infty,0]$ + + +021670 +$k=3$或$-3$;$b=-1$ + + +021671 +当$x=0$时,函数$y$取到最大值,最大值为$0$;\\ +当$x=\dfrac{\pi}{4}$时,函数$y$取到最小值,最小值为$-1$. + + +021672 +$f(a)=\begin{cases} +a^2+2a+2, & a\leq -1,\\ +1, & -1=latex, scale = 0.7] +\draw [->] (-4,0) -- (4,0) node [below] {$x$}; +\draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\draw ({-pi/12},0.1) -- ({-pi/12},0) node [below left] {$-\frac{\pi}{12}$}; +\draw ({pi/6},0.1) -- ({pi/6},0) node [below] {$\frac{\pi}{6}$}; +\draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$}; +\draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above] {$\frac{2\pi}{3}$}; +\draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$}; +\draw (0.1,1) -- (0,1) node [left] {$1$}; +\draw (0.1,-1) -- (0,-1) node [left] {$-1$}; +\draw [domain = {-pi/12}:{11*pi/12},samples = 100] plot (\x,{sin(2*\x/pi*180+30)}); +\end{tikzpicture}\\ +(2) \begin{tikzpicture}[>=latex, scale = 0.7] +\draw [->] (-1,0) -- (15,0) node [below] {$x$}; +\draw [->] (0,-3) -- (0,3) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$}; +\draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; +\draw (3*pi,0.1) -- (3*pi,0) node [below] {$\frac{3\pi}{2}$}; +\draw (4*pi,0.1) -- (4*pi,0) node [below] {$4\pi$}; +\draw (0.1,2) -- (0,2) node [left] {$2$}; +\draw (0.1,-2) -- (0,-2) node [left] {$-2$}; +\draw [domain =0:4*pi,samples = 100] plot (\x,{2*sin(0.5*\x/pi*180)}); +\end{tikzpicture}\\ +(3) \begin{tikzpicture}[>=latex, scale = 0.7] +\draw [->] (-1,0) -- (4,0) node [below] {$x$}; +\draw [->] (0,-1) -- (0,1) node [left] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (0.25*pi,0.1) -- (0.25*pi,0) node [below] {$\frac{\pi}{4}$}; +\draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; +\draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$}; +\draw (0.75*pi,0.1) -- (0.75*pi,0) node [above] {$\frac{3\pi}{4}$}; +\draw (0.1,0.5) -- (0,0.5) node [left] {$\frac{1}{2}$}; +\draw (0.1,-0.5) -- (0,-0.5) node [left] {$-\frac{1}{2}$}; +\draw [domain =0:pi,samples = 100] plot (\x,{0.5*sin(2*\x/pi*180)}); +\end{tikzpicture}\\ +(4) \begin{tikzpicture}[>=latex, scale = 0.7] +\draw [->] (-1.5,0) -- (3.5,0) node [below] {$x$}; +\draw [->] (0,-5.5) -- (0,5.5) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\draw ({-pi/3},0.1) -- ({-pi/3},0) node [below left] {$-\frac{\pi}{3}$}; +\draw ({-pi/12},0.1) -- ({-pi/12},0) node [above left] {$-\frac{\pi}{12}$}; +\draw ({pi/6},0.1) -- ({pi/6},0) node [below right] {$\frac{\pi}{6}$}; +\draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$}; +\draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above right] {$\frac{2\pi}{3}$}; +\draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$}; +\draw (0.1,5) -- (0,5) node [left] {$5$}; +\draw (0.1,-5) -- (0,-5) node [below left] {$-5$}; +\draw [domain = {-4*pi/12}:{2*pi/3},samples = 100] plot (\x,{5*sin(2*\x/pi*180-60)}); +\end{tikzpicture} + + +021695 +$4\pi$;$4$. + + +021696 +$f(x)=4\sin(x+\dfrac{\pi}{6})$ + + +021697 +(1) $f(x)=\dfrac{\sqrt{3}}{2}\sin(3x+\pi)+\dfrac{\sqrt{3}}{2};$\\ +(2) $[-\dfrac{\pi}{2}+\dfrac{2k\pi}{3},-\dfrac{\pi}{6}+\dfrac{2k\pi}{3}],k \in \mathbf{Z}$;\\ +(3) 函数最大值为$\sqrt{3}$,此时$x$值为${x|x=-\dfrac{\pi}{6}+\dfrac{2k\pi}{3},k \in \mathbf{Z}}$ + + +021698 +$x=\pi+2k\pi,k \in \mathbf{Z}$ + + +021699 +纵;伸长; $3$. + + +021700 +缩短; $\dfrac{1}{2}$; 缩短; $\dfrac{1}{3}$. + + +021701 +$f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{3})$ + + +021702 +$f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{6})$ + + +021703 +$f(x)=2\sin(\dfrac{1}{3}x+\dfrac{\pi}{6})$ + + +021704 +$x=\dfrac{\pi}{3}+2k\pi,k \in \mathbf{Z}$; $(-\dfrac{2\pi}{3}+2k\pi,0),k \in \mathbf{Z}$. + + +021705 +C + + +021706 +左; $\dfrac{\pi}{8}$. + + +021707 +$f(x)=\sin(2x+\dfrac{\pi}{2})$, +$g(x)=\sin x$. + + +021708 +(1) $\sqrt{2}$; +(2) $g(x)=2\cos(\dfrac{1}{2}x-\dfrac{\pi}{3}) $, 单调递减区间为$[\dfrac{2\pi}{3}+4k\pi,\dfrac{8\pi}{3}+4k\pi],k \in \mathbf{Z}$. + + +021709 +(1) $2\pi$; (2) $1$; (3) $\dfrac{\pi}{2}$. + + +021710 +(1) $[0,\dfrac{\pi}{2})$, $(\dfrac{3\pi}{2},2\pi]$; \\ +(2) $[0,\dfrac{\pi}{2})$, $(\dfrac{\pi}{2},\pi]$. + + +021711 +(1) 奇函数; (2) 偶函数. + + +021712 +$[-5,+\infty)$ + + +021713 +(1) $<$; (2) $>$; (3) $>$; (4)$<$. + + +021714 +\textcircled{3} + + +021715 +最小值为$-\dfrac{\sqrt{3}}{3}$,此时$x=-\dfrac{\pi}{3}$. + + +021716 +(1) $ \{x|x \neq \dfrac{k\pi}{2},k \in \mathbf{Z}\} $;\\ +(2) 单调增区间为$(-\dfrac{\pi}{2}+\dfrac{k\pi}{2},\dfrac{k\pi}{2}), k \in \mathbf{Z}$. + + +021717 +$\{x|x\neq \dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{k\pi}{2},k \in \mathbf{Z} \}$ + + +021718 +$(-\dfrac{\pi}{4}+\dfrac{k\pi}{3},\dfrac{\pi}{12}+\dfrac{k\pi}{3}), k \in \mathbf{Z}$ + + +021719 +B + + +021720 +定义域为$ \{x|x \neq \dfrac{7\pi}{5}+2k\pi,k \in \mathbf{Z}\} $;\\ +严格增区间为$(-\dfrac{3\pi}{5}+2k\pi,\dfrac{7\pi}{5}+2k\pi), k \in \mathbf{Z}$. + + +021721 +函数零点为$x=\dfrac{2k\pi}{5}+2k\pi,k \in \mathbf{Z}$. + + +021722 +(1) 假命题; (2) 假命题; (3) 假命题; (4) 真命题. + + +021723 +$[-4,2+4\sqrt{3}]$ + + +021724 +最大张角的正切值为$\dfrac{\sqrt{2}}{4}$, 此时学生距离时钟$\sqrt{0.18}$米. + + +021725 +\begin{center} +\begin{tikzpicture}[>=latex,scale= 0.5] +\foreach \i in {0,1,...,8} +{\draw [dashed] (0,\i) -- (8,\i) (\i,0) -- (\i,8);}; +\filldraw (1,2) node [below left] {$A$} coordinate (A) circle (0.06); +\filldraw (7,3) node [below left] {$B$} coordinate (B) circle (0.06); +\filldraw (3,5) node [below left] {$C$} coordinate (C) circle (0.06); +\draw [->] (8.5,5) -- (8.5,7) node [right] {北}; +\draw [->] (A) --++ (0,2) node [above left] {$E$} coordinate (E); +\draw [->] (B) --++ (-2,2) node [above right] {$F$} coordinate (F); +\draw [->] (C) --++ (2,-2) node [below left] {$G$} coordinate (G); +\end{tikzpicture} +\end{center} + + +021726 +A + + +021727 +C + + +021728 +B + + +021729 +单位圆 + + +021730 +B + + +021731 +$\overrightarrow{CD}$ + + +021732 +$\overrightarrow{AC}$ + + +021733 +(1) 假命题; (2) 真命题; (3) 假命题; (4) 假命题. + + +021734 +(1) $\overrightarrow{DB}$; $\overrightarrow{FE}$.\\ +(2) $\overrightarrow{ED}$; $\overrightarrow{CF}$; $\overrightarrow{FA}$.\\ +(3) $\overrightarrow{EF}$; $\overrightarrow{AD}$; $\overrightarrow{DA}$; $\overrightarrow{DB}$; $\overrightarrow{BD}$; $\overrightarrow{AB}$; $\overrightarrow{BA}$. + + +021735 +$40$ + + +021736 +$40$ + + +021737 +$2$ + + +021738 +\begin{center} +\begin{tikzpicture}[>=latex] +\draw [->] (0,0) -- (1,0.7) node [midway, above] {$\overline{a}$}; +\draw [->] (1.2,0) -- (2,0) node [midway, above] {$\overline{b}$}; +\draw [->] (3,0) -- (2.4,0.6) node [midway, above] {$\overline{c}$}; +\filldraw (6,0) node [below] {$O_1$} coordinate (O_1) circle (0.03); +\filldraw (9,0) node [below] {$O_2$} coordinate (O_2) circle (0.03); +\draw [dashed,->] (O_1) --++ (1,0.7) node[midway,below]{$\overrightarrow{a}$} coordinate (P_1); +\draw [dashed,->] (P_1) --++ (-0.6,0.6) node [midway,above right] {$\overrightarrow{c}$} coordinate (Q_1); +\draw [dashed,->] (Q_1) --++ (-0.8,0) node [midway, above] {$-\overrightarrow{b}$} coordinate (R_1); +\draw [dashed,->] (O_1) -- (Q_1); +\draw [ultra thick,->] (O_1)--(R_1); +\draw [dashed,->] (O_2) --++ (1,0.7) node[midway,below]{$\overrightarrow{a}$} coordinate (P_2); +\draw [dashed,->] (P_2) --++ (-0.6,0.6) node [midway,above right] {$\overrightarrow{c}$} coordinate (Q_2); +\draw [dashed,->] (Q_2) --++ (-0.8,0) node [midway, above] {$-\overrightarrow{b}$} coordinate (R_2); +\draw [dashed,->] (P_2) -- (R_2); +\draw [ultra thick,->] (O_2)--(R_2); +\end{tikzpicture} +\end{center} + + +021739 +$-3\overrightarrow {a}+6 \overrightarrow {b}$ + + +021740 +$7 \overrightarrow {a}-2 \overrightarrow {b}- \overrightarrow {c}$ + + +021741 +(1) 假命题; (2) 真命题; (3) 假命题; (4) 真命题. + + +021742 +(1) $\overrightarrow {AB}=\dfrac{1}{2}\overrightarrow {a}-\dfrac{1}{2}\overrightarrow {b}$;\\ +(2) $\overrightarrow {BC}=\dfrac{1}{2}\overrightarrow {a}+\dfrac{1}{2}\overrightarrow {b}$. + + +021743 +$\lambda=\dfrac{1}{3}$ + + +021744 +$x=2$; $y=1$. + + +021745 +(2) $m=1$或$-1$. + + +021746 +$\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{a}$;\\ $\overrightarrow{DC}=-\dfrac{1}{2}\overrightarrow{a}+\overrightarrow{b}$;\\ +$\overrightarrow{MN}=-\dfrac{1}{4}\overrightarrow{a}-\overrightarrow{b}$. + + +021747 +$\overrightarrow{0}$ + + +021748 +$\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}$ + + +021749 +A + + +021750 +B + + +021751 +C + + +021752 +$\sqrt{3}$ + + +021753 +$-\dfrac{3\sqrt{3}}{2}$ + + +021754 +等边三角形 + + +021755 +$\dfrac{\pi}{4}$ + + +021756 +$\dfrac{2\pi}{3}$ + + +021757 +$-10\sqrt{2}$ + + +021758 +$\dfrac{4}{3}$ + + +021759 +$-\dfrac{2}{3}\overrightarrow {a}$ + + +021760 +B + + +021761 +B + + +021762 +A + + +021763 +$7$ + + +021764 +$2$ + + +021765 +C + + +021766 +外心; 重心; 垂心. + + +021767 +$\dfrac{\pi}{3}$ + + +021768 +$-25$ + + +021769 +$\lambda=\dfrac{7}{12}$ + + +021770 +$AB=8$ + + +021771 +$t=\dfrac{1}{3}$ + + +021772 +(1) $(\overrightarrow {a}-\overrightarrow {b}) \cdot \overrightarrow {c}=\overrightarrow {a} \cdot \overrightarrow {c}- \overrightarrow {b} \cdot \overrightarrow {c}=1*1*(-\dfrac{1}{2})-1*1*(-\dfrac{1}{2})=0;\\$ +(2) $k<0$或$k>2$. + + +021773 +$[2,5]$ + + +021774 +$\arccos \dfrac{4}{5}$ + + +021775 +$\overrightarrow{OP}=\dfrac{3}{11}\overrightarrow {a}+\dfrac{2}{11}\overrightarrow {b}$ + + +021776 +(1) $(-1,0)$; (2) $(2,\dfrac{1}{2})$; (3) $(2,0)$或 $(-2,0)$; (4) $(\dfrac{3\sqrt{2}}{2},-\dfrac{3\sqrt{2}}{2})$. + + +021777 +(1) 10; (2) $(-\dfrac{4}{5},\dfrac{3}{5})$. + + +021778 +$x=4$, $y=1$. + + +021779 +$(\dfrac{3}{5},-\dfrac{4}{5})$ + + +021780 +$(4,-8)$ + + +021781 +$(1,2)$ + + +021782 +C + + +021783 +A + + +021784 +B + + +021785 +证明略 + + +021786 +$\lambda=\mu$ 且$\lambda$和$\mu$非零. + + +021787 +(1) 当$t=\dfrac{3}{2}$时,点$P$在$x$轴上; 当$t=\dfrac{1}{3}$时,点$P$在$y$轴上;当$-\dfrac{2}{3}=latex, scale = 0.4] +\draw [->] (-4.5,0) -- (4.5,0) node [below] {$x$}; +\draw [->] (0,-4.5) -- (0,4.5) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\draw (0,0) circle (3); +\draw (3,0) node [below right] {$3$}; +\end{tikzpicture}; (2) \begin{tikzpicture}[>=latex] +\draw [->] (0,0) -- (3,0) node [below] {$x$}; +\draw [->] (0,0) -- (0,3) node [left] {$y$}; +\draw (0,0) node [below left] {$O$}; +\filldraw [pattern = north east lines, draw = white] (1,1) rectangle (2,2); +\draw [dashed] (1,1) rectangle (2,2); +\foreach \i in {1,2} +{\draw [dashed] (\i,1) -- (\i,0) node [below] {$\i$}; +\draw [dashed] (1,\i) -- (0,\i) node [left] {$\i$};} +\end{tikzpicture} + + +021868 +$z_2=-2\sqrt{5}+\sqrt{5} \mathrm{i}$ + + +021869 +(1) $0\leq m \leq 3$; \\ +(2) 当$m=\dfrac{3}{2}$时, $z$的模的最小值为$\dfrac{\sqrt{10}}{2}$. + + +021870 +A + + +021871 +\textcircled{3} ,\textcircled{5} + + +021872 +\textcircled{2} ,\textcircled{5} + + +021873 +$4,1+\sqrt{3}\mathrm{i}, 1-\sqrt{3}\mathrm{i} $. + + +021874 +$\mathrm{i},-\mathrm{i}$ + + +021875 +$\sqrt{-a}\mathrm{i},-\sqrt{-a}\mathrm{i}$. + + +021876 +A + + +021877 +(1) $\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{10}}{2}\mathrm{i},-\dfrac{\sqrt{10}}{2}-\dfrac{\sqrt{10}}{2}\mathrm{i}$;\\ +(2) $3-2\mathrm{i},-3+2\mathrm{i}$. + + +021878 +(1) $(x-1)^2+y^2=1$;\\ +(2) $[0,2]$. + + +021879 +$3$ + + +021880 +$z_1=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}, z_2=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}$ +或$z_1=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}, z_2=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}$. + + +021881 +$-60+20\mathrm{i}$或$60-20\mathrm{i}$ + + +021882 +$\sqrt{2}$ + + +021883 +\textcircled{1},\textcircled{3} + + +021884 +$(-\dfrac{2}{3},\dfrac{8}{9})$ + + +021885 +$(-1,1-\mathrm{i})$ + + +021886 +$\sqrt{2}$ + + +021887 +$(0,4)$ + + +021888 +$\{-2\sqrt{2},2\sqrt{2}\}$ + + +021889 +(1) $\{-\dfrac{3\mathrm{i}}{2},\dfrac{3\mathrm{i}}{2} \}$;\\ +(2) $\{-2+2\sqrt{2}\mathrm{i},-2-2\sqrt{2}\mathrm{i}\}$;\\ +(3) $\{\dfrac{-1+\sqrt{3}\mathrm{i}}{2},\dfrac{-1-\sqrt{3}\mathrm{i}}{2} \}$;\\ +(4) $\{1,\mathrm{i}\}$. + + +021890 +(1) $[x-(-1+\sqrt{2}\mathrm{i})y][x-(-1-\sqrt{2}\mathrm{i})y]$;\\ +(2) $(x+y)(x-\dfrac{1+\sqrt{3}\mathrm{i}}{2}y)(x-\dfrac{1-\sqrt{3}\mathrm{i}}{2}y)$. + + +021891 +$\dfrac{\sqrt{3}+3\mathrm{i}}{2},\dfrac{\sqrt{3}-3\mathrm{i}}{2}$ + + +021892 +$2,-2$ + + +021893 +(1) $-\dfrac{3}{4}$; (2) $6$或$-2$; (3) $\dfrac{9}{2}$或$4-2\sqrt{13}$. + + +021894 +(1) $4+\mathrm{i}$或$4-\mathrm{i}$;\\ +(2) $2$或$-2$或$2\mathrm{i}$或$-2\mathrm{i}$;\\ +(3) $\dfrac{-3+\sqrt{3}\mathrm{i}}{2}$或$\dfrac{-3-\sqrt{3}\mathrm{i}}{2}$;\\ +(4) $2$或$2\mathrm{i}$. + + +021895 +(1) $(a+b+c\mathrm{i})(a+b-c\mathrm{i})$; +(2) $(x+\sqrt{5}\mathrm{i})(x-\sqrt{5}\mathrm{i})(x+\sqrt{2})(x-\sqrt{2})$. + + +021896 +当$p=3$时,方程的解为$-3,-1-\mathrm{i}$; +当$p=1$时,方程的解为$-1,-3-\mathrm{i}$. + + +021897 +$x^2-6x+10=0$ + + +021898 +$\{ -4,4,-2\sqrt{6},2\sqrt{6} \}$ + + +021899 +(1) $z_1=-\dfrac{1}{2}+\dfrac{\sqrt{3}\mathrm{i}}{2},z_2=-\dfrac{1}{2}-\dfrac{\sqrt{3}\mathrm{i}}{2}$或$z_1=-\dfrac{1}{2}-\dfrac{\sqrt{3}\mathrm{i}}{2},z_2=-\dfrac{1}{2}+\dfrac{\sqrt{3}\mathrm{i}}{2}$;\\ +(2) $[\sqrt{13},4)$ + + +021900 +$1-\sqrt{2}$ + + +021901 +(1) $2(\cos \dfrac{3\pi}{2}+\mathrm{i}\sin \dfrac{3\pi}{2})$;\\ +(2) $\cos \pi+\mathrm{i}\sin\pi$;\\ +(3) $\sqrt{2}(\cos \dfrac{3\pi}{4}+\mathrm{i}\sin \dfrac{3\pi}{4})$;\\ +(4) $2(\cos \dfrac{4\pi}{3}+\mathrm{i}\sin \dfrac{4\pi}{3})$. + + +021902 +(1) $2\pi-\arccos \dfrac{3}{5}$; +(2) $\cos \dfrac{9\pi}{5}+\mathrm{i}\sin \dfrac{9\pi}{5}$. + + +021903 +$\mathrm{i}$ + + +021904 +(1) $\sqrt{2}(\cos \dfrac{\pi}{4}+\mathrm{i}\sin \dfrac{\pi}{4})$;\\ +(2) $\dfrac{\pi}{4}$. + + +021905 +(1) $15\sqrt{2}+15\sqrt{2}\mathrm{i}$; +(2) $\dfrac{\sqrt{3}}{6}+\dfrac{\mathrm{i}}{2}$. + + +021906 +(1) $-2^{10}$; \\ +(2) $2^{11} (-\dfrac{\sqrt{3}}{2}-\dfrac{\mathrm{i}}{2})$. + + +021907 +$-\sqrt{3}+\mathrm{i}$ + + +021908 +$18$ + + +021909 +(1) 假命题; (2) 假命题; (3) 假命题; (4) 假命题. + + +021910 +$-\dfrac{1}{2}$; $\pi-\arctan\dfrac{1}{2}$. + + +021911 +$\dfrac{3}{2-a}$; $\pi-\arctan\dfrac{3}{a-2}$. + + +021912 +$\dfrac{3}{2-a}$; $\arctan\dfrac{3}{2-a}$. + + +021913 +$[1,\sqrt{3}]$ + + +021914 +$[-\dfrac{4}{3},\dfrac{4}{3}]$ + + +021915 +$\dfrac{2\pi}{5}$ + + +021916 +$\dfrac{\pi}{10}$ + + +021917 +$\dfrac{5}{2}$ + + +021918 +$-\dfrac{\sqrt{3}}{3}$ + + +021919 +$-\dfrac{\sqrt{3}}{3}$ + + +021920 +$4$或$-\dfrac{3}{2}$ + + +021921 +(1) 直线$OB$和$AC$的斜率分别为$1,-1$; +(2) $1,-1$. + + +021922 +(1) 当$k>0$时, $\alpha=\arctan k$; +当$k<0$时, $\alpha=\pi-\arctan(-k)$; + + +021923 +证明略 + + +021924 +$(-\infty,-\sqrt{3})$ + + +021925 +$[1,4]$ + + +021926 +$\theta-\pi$ + + +021927 +$[\dfrac{2\pi}{3},\pi)$ + + +021928 +$\dfrac{3\pi}{2}-\theta$ + + +021929 +$a \neq 0$ + + +021930 +$[0,\dfrac{\pi}{4}]\cup +[\pi-\arctan 2,\pi)$ + + +021931 +(1) $|AB|=sec^2 \alpha$; (2) $2\alpha$. + + +021932 +$a \neq \dfrac{1}{11}$ + + +021933 +$-a$; $\pi-\arctan a$. + + +021934 +$\dfrac{1+k_1}{1-k_1}$ + + +021935 +$\dfrac{1+\sqrt{3}k_1}{\sqrt{3}-k_1}$ + + +021936 +证明略 + + +021937 +设$x$轴正方向的单位向量为$\overrightarrow {i}$,\\ +当$<\overrightarrow {i},\overrightarrow {d}>=0$时, 投影为$\overrightarrow {d}$,数量投影为$|\overrightarrow {d}|$;\\ +当$<\overrightarrow {i},\overrightarrow {d}>=\pi$时,投影为$\overrightarrow {d}$,数量投影为$-|\overrightarrow {d}|$;\\ +当$<\overrightarrow {i},\overrightarrow {d}>$为锐角时,投影为$(\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}},0)$,数量投影为$\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}}$;\\ +当$<\overrightarrow {i},\overrightarrow {d}>$为钝角时,投影为$(-\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}},0)$,数量投影为$-\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}}$. + + +021938 +$y+2=\sqrt{3}(x-1)$ + + +021939 +$\dfrac{y+2}{3}=\dfrac{x-1}{2}$ + + +021940 +$y=\dfrac{5}{2}x=5$ + + +021941 +$\dfrac{7}{2}$ + + +021942 +$y-5=\dfrac{3}{4}(x-3)$或$y-5=-\dfrac{3}{4}(x-3)$ + + +021943 +$x=-2$ + + +021944 +$\pi-\arctan 5$ + + +021945 +$[-2\sqrt{3},0) \cup (0,2\sqrt{3}]$ + + +021946 +(1) $2x+y-6=0$; $x-y-3=0$; $x+2y-6=0$;\\ +(2) $x+y-4=0$; $x-3=0$; $y-1=0$. + + +021947 +$AD$与$CD$边所在的直线方程分别为 +$2x+y-4=0,x-y+4=0$. + + +021948 +$2x-3y+6=0$或$x-2y+5=0$ + + +021949 +$4x+y-6=0$或$3x+2y-7=0$ + + +021950 +(1) $[-2,4]$; (2) $[\dfrac{3}{4},6]$ + + +021951 +$3(x-2+4(y+3)=0$ + + +021952 +$3(x-\dfrac{7}{2})+2(y-2)=0$ + + +021953 +$-1, -\sqrt{3}-1$ + + +021954 +$2x-3y-6=0$ + + +021955 +$x-y-3=0$或$x+y+1=0$ + + +021956 +$3x+y-6=0$ + + +021957 +C + + +021958 +A + + +021959 +D + + +021960 +$3x-y-6=0,x+y-6=0$ + + +021961 +$3x+2y-12=0,4x-3y-3=0,2x+7y-21=0.$ + + +021962 +$\dfrac{1}{8}$ + + +021963 +$\dfrac{11}{5}$ + + +021964 +(1) $(-\infty,\dfrac{4}{3}] \cup [\dfrac{5}{3},+\infty)$;\\ +(2) $(-5,-2)$. + + +021965 +(1) $5x-y+5=0$; (2) $5x-y-10\sqrt{2}=0$或$5x-y+10\sqrt{2}=0$. + + +021966 +$3$ + + +021967 +$-1$, $1$, $(-\infty,-1)\cup (-1,1)\cup (1,+\infty)$ + + +021968 +$-8$ + + +021969 +D + + +021970 +B + + +021971 +B + + +021972 +$1$ + + +021973 +证明略 + + +021974 +$2x-y-5=0$ + + +021975 +$(-1,1)$ + + +021976 +$\sqrt{449}$ + + +021977 +(1) 重合;(2) 相交, $\arccos\dfrac{19\sqrt{370}}{370}$; (3) 相交, $\arctan \dfrac{3}{2}$. + + +021978 +$\dfrac{1}{2}$ + + +021979 +A + + +021980 +$y-4=0$或$4x+3y-24=0$ + + +021981 +A + + +021982 +C + + +021983 +$x-2y-6=0,2x+y-7=0$. + + +021984 +$x+6y=0$ + + +021985 +$2x+9y-65=0$ + + +021986 +入射光线:$3x-y-12=0$, 反射光线: $x-3y-14=0$; +入射光线:$x-3y+4=0$, 反射光线: $3x-y+6=0$. + + +021987 +$-5$;$8$;$(-\infty,-5) \cup (-5,8) \cup (8,+\infty)$. + + +021988 +$(1,7)$ + + +021989 +相交 + + +021990 +D + + +021991 +B + + +021992 +与直线$x+4 y-7=0$垂直的直线方程为$4x-y-5=0$; +与直线$x+4 y-7=0$平行的直线方程为$x+4y+3=0$. + + +021993 +(1) $(-b,a)$ + + +021994 +$(\dfrac{2}{5},\dfrac{4}{5})$ + + +021995 +$(\dfrac{2}{3},\dfrac{8}{3})$ + + +021996 +当$B(2,1)$或$B(-2,1)$时, $\triangle ABC$的面积的最小值为$8$. + + +021997 +$7x-2y-11=0$ + + +021998 +$\dfrac{8\sqrt{13}}{13}$ + + +021999 +$\dfrac{9\sqrt{10}}{20}$ + + +022000 +$4x+3y+5=0$或$4x+3y-5=0$ + + +022001 +$x-y=0$或$x-y-4=0$ + + +022002 +$\dfrac{\pi}{6}$ + + +022003 +$\dfrac{13}{5}$ + + +022004 +C + + +022005 +A + + +022006 +$x+2y-9=0,2x-y+5=0,2x-y-7=0$. + + +022007 +$3$或$-4$ + + +022008 +证明略 + + +022009 +$(1,0)$ + + +022010 +$x+7y-15=0$或$7x-y-5=0$ + + +022011 +$(0,3\sqrt{2}]$; $x+y-8=0.$ + + +022012 +$5x+6y=0$或$11x+2y=0$ + + +022013 +$2x+y-5=0$或$x-2y+5=0$ + + +022014 +$[-1,1]$ + + +022015 +$(8,11)$ + + +022016 +$(\dfrac{2}{5},\dfrac{19}{5})$ + + +022017 +$x+2y+9=0$ + + +022018 +$2x+y-3=0$; $x-2y+3=0$. + + +022019 +$\sqrt{5}$ + + +022020 +(1) $2x+3y+1=0$; \\ +(2) $2x+3y-1=0$; \\ +(3) $2x-3y-1=0$; \\ +(4) $3x-2y-1=0$; \\ +(5) $3x-2y+1=0$. \\ + + +022021 +$P(-\dfrac{7}{2},0)$, $Q(-\dfrac{7}{3},\dfrac{7}{3})$ + + +022022 +(1) 正, 图略; (2) 正, 图略 + + +022024 +证明略 + + +040890 +$(x+\dfrac{3}{2})^2+(y-3)^2=3$ + + +040891 +$(x-\sqrt{2})^2+(y-1)^3=6$ + + +040892 +$\dfrac{2}{5}$ + + +040893 +$(x+3)^2+(y-2)^2=4$ + + +040894 +$(x+3)^2+(y-1)^2=5$或$(x+3)^2+(y+1)^2=5$ + + +040895 +$(x+3)^2+(y-2)^2=2$ + + +040896 +A + + +040897 +$\pi$ + + +040898 +(1) $a^2+b^2=r^2$;\\ +(2) $b=0$;\\ +(3) $r=|b|$;\\ +(4) $r=|a|=|b|$. + + +040899 +$(x+1)^2+(y+2)^2=10$ + + +040900 +$(x-1)^2+(y+2)^2=2$或$(x-9)^2+(y+18)^2=338$ + + +040901 +$(x-4)^2+(y-4)^2=16$或$(x-1)^2+(y+1)^2=1$ + + +040902 +(1) 变量$x$和$y$的取值范围分别为$[-2,2]$和$[0,2]$;\\ +(2) 变量$x$和$y$的取值范围分别为$[-3,3]$和$[-2,1]$. + + +040903 +(1) 不是圆的方程;\\ +(2) 不是圆的方程;\\ +(3) 是圆的方程, $(x-2)^2+y^2=4$, 圆心为$(2,0)$, 半径为$2$;\\ +(4) 是圆的方程, $(x-\dfrac{1}{2})^2+(y+\dfrac{3}{2})^2=\dfrac{1}{2}$, 圆心为$(\dfrac{1}{2},-\dfrac{3}{2})$, 半径为$\dfrac{\sqrt{2}}{2}$;\\ +(5) 不是圆的方程. + + +040904 +必要非充分条件 + + +040905 +(1) 点在圆外; (2) 点在圆内; (3) 点在圆内. + + +040906 +$-1$ + + +040907 +$(-\dfrac{1}{7},1)$ + + +040908 +$(-16,10)$ + + +040909 +$(x-1)^2+(y+3)^2=4$ + + +040910 +$(x-\dfrac{a}{2})^2+(y-\dfrac{b}{2})^2=\dfrac{a^2+b^2}{4}$ + + +040911 +圆心坐标$(2,1)$,半径为$5$. + + +040912 +$(x-1)^2+(y-2)^2=5$或$(x+1)^2+(y-\dfrac{4}{3})^2=\dfrac{25}{9}$ + + +040913 +$M_1$在圆内, $M_2$在圆外. + + +040914 +以$AB$的中点为原点,所在直线为$x$轴,建立直角坐标系,点$P$是以$(\dfrac{25}{4},0)$为圆心, $\dfrac{15}{4}$为半径的圆. + + +040915 +${(\dfrac{\sqrt{2}}{2},-\dfrac{\sqrt{2}}{2}),(-\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2})}$ + + +040916 +$x+y=0$ + + +040917 +A + + +040918 +B + + +040919 +$(-6,4)$ + + +040920 +相切 + + +040921 +$(0,3)$ + + +040922 +(1) $(-2,2)$; (2) $[\sqrt{2},2)$. + + +040923 +(1) 当实数$-2 \le k < -\dfrac{4}{3}$或$0 < k \le \dfrac{2}{3}$时, 直线$l$与曲线$\Gamma$分别有两个公共点;\\ +当实数$k$取值范围为$(-\infty,-2) \cup \{0,-\dfrac{4}{3}\}\cup (\dfrac{2}{3},+\infty)$;\\ +(2) $[-2,2\sqrt{2}]$;\\ +(3) $[-\dfrac{2\sqrt{5}}{5},0]$. + + +040924 +$-\dfrac{\sqrt{6}}{3},\dfrac{\sqrt{6}}{3}$ + + +040925 +$[-\dfrac{3}{4},0]$ + + +040926 +$(3x-3)^2+(3y-1)^2=16$ + + +040927 +$(x-3)^2+(y-1)^2=9$或$(x+3)^2+(y+1)^2=9$ + + +040928 +$x-y+4=0,x-y-1=0$ + + +040929 +B + + +040930 +$(x-4)^2+(y)^2=1$ + + +040931 +$x-2y+5=0$ + + +040932 +$(x-\dfrac{24}{5})^2+(y+\dfrac{18}{5})^2=1$ + + +040933 +$3x-y+1=0$ + + +040934 +$(x-6)^2+y^2=4$ + + +040935 +(1) $2x+y-5=0$; (2) $2\sqrt{30}$. + + +040936 +$x^2+y^2-y=0(x \neq 0)$. + + +040937 +$\dfrac{27}{4}$ + + +040938 +(1) $\dfrac{y}{x}$的最大值和最小值分别为$\sqrt{3}$, $-\sqrt{3}$;\\ +(2) $x^2+y^2$的最大值和最小值分别为$7+4\sqrt{3}$, $7-4\sqrt{3}$;\\ +(3) $x-y$的最小值为$-2-\sqrt{6}$. + + +040018 +(1) $\dfrac{\pi}{4}$; (2) $\dfrac{\pi}{6}$; (3) $\dfrac{\pi}{10}$; (4) $\dfrac{\pi}{3}$; (5) $\dfrac{5\pi}{12}$; (6) $\dfrac{\pi}{15}$ + + +040019 +(1) $60^{\circ}$; (2) $36^{\circ}$; (3) $45^{\circ}$; (4) $75^{\circ}$; (5) $40^{\circ}$; (6) $54^{\circ}$ + + +040020 +(1) $2k\pi+\dfrac{\pi}{2}$; (2) $2k\pi+\dfrac{3\pi}{2}$; (3) $2k\pi+\dfrac{7\pi}{6}$; (4) $k\pi+\dfrac{\pi}{4}$; (5) $\dfrac{k\pi}{2}+\dfrac{\pi}{6}$ + + +040021 +(1) $k \times 360^{\circ}+60^{\circ}$;\\ +(2) $k \times 360^{\circ}+330^{\circ}$; \\ +(3) $k \times 360^{\circ}-210^{\circ}$; \\ +(4) $k \times 180^{\circ}-45^{\circ}$; \\ +(5) $k \times 90^{\circ}+50^{\circ}$ + + +040022 +(1) $330^{\circ}$; (2) $240^{\circ}$; (3) $210^{\circ}$; (4) $300^{\circ}$ + + +040023 +(1) $\dfrac{4\pi}{3}$; (2) $\dfrac{11\pi}{6}$; (3) $10-2\pi$; (4) $-10+4\pi$ + + +040024 +$18$ + + +040025 +$3$, $-2$ + + +040026 +(1) $1037$; (2) $-4k+53$; (3) $500$ + + +040027 +$-2n+10$ + + +040028 +15 + + +040029 +$7$ + + +040030 +$(4,\dfrac{14}{3}]$ + + +040031 +$2n-1$ + + +040032 +$(3,\dfrac{35}{9})$或$(\dfrac{35}{9},3)$ + + +040033 +$200$ + + +040034 +略 + + +040035 +$a_n=\begin{cases}1, & n=1,\\ 2n, & n=2k, \\ 2n-2, & n=2k+1\end{cases}$($k\in \mathbf{N}$, $k\ge 1$) + + +040036 +$6n-3$ + + +040057 +$\dfrac{19}{28}\sqrt{7}$ + + +040058 +$\dfrac{79}{156}$ + + +040059 +$2$ + + +040060 +$-\dfrac{\sqrt{1-m^2}}{m}$ + + +040061 +$-\dfrac{1}{5}, \dfrac{1}{5}$ + + +040062 +$-\dfrac{1}{3}, 3$ + + +040063 +$\dfrac{1}{2}, -2$ + + +040064 +$\dfrac{\sqrt{6}}{3}$ + + +040065 +$\dfrac{1}{3}, -\dfrac{9}{4}$ + + +040066 +$\dfrac{1}{3}, \dfrac{7}{9}$ + + +040067 +$\pm\dfrac{\sqrt{2}}{3}$ + + +040068 +$\dfrac{1}{4}, \dfrac{2}{5}$ + + +040069 +$\dfrac{1-\sqrt{17}}{4}$ + + +040070 +(1) 三; (2) 三 + + +040071 +(1) $[-\dfrac{1}{2},\dfrac{1}{2})\cup\{1\}$; (2) $[-\dfrac{\pi}{3},\dfrac{\pi}{3})$; (3) $\{-\dfrac{1}{2}\}$ + + +040072 +(1) $-\tan \alpha-\cot \alpha$; (2) $-\dfrac{\sqrt{2}}{\sin \alpha}$; (3) $-1$; (4) $0$ + + +040073 +略 + + +040074 +$-\dfrac{10}{9}$ + + +040075 +$a_n=\dfrac{1}{3n-2}$ + + +040076 +$a_n=\dfrac{1}{n}$ + + +040077 +$(n-\dfrac{4}{5})5^n$ + + +040078 +$2^{n+1}-3$ + + +040079 +$1078$ + + +040080 +$S_n=\begin{cases}\dfrac{n^2}{2}+n-\dfrac 23+\dfrac 23\cdot 2^n, & n\text{为偶数},\\ \dfrac{n^2}{2}-\dfrac 76+\dfrac 23\cdot 2^{n+1}, & n\text{为奇数} \end{cases}$ + + +040081 +(1) 略; (2) $n^2$ + + +040082 +(1) 不存在; (2) 存在, 如$c_n=2^{n-1}$ + + +040083 +$\dfrac{\sqrt{3}}{2}$ + + +040084 +$0$ + + +040085 +$\{0,-2\pi\}$ + + +040086 +$-\dfrac{\pi}6,\dfrac 56\pi$ + + +040087 +$\cot \alpha$ + + +040088 +$7+4\sqrt{3}$ + + +040089 +$\dfrac{\sqrt{2}-\sqrt{6}}{4}$ + + +040090 +$\dfrac{\sqrt{3}+\sqrt{35}}{12}$ + + +040091 +$\dfrac 12$ + + +040092 +$5$ + + +040093 +$-\dfrac 12$ + + +040094 +$\dfrac{\pi}{12}$ + + +040095 +$\{x|x=\pm\frac 23 \pi+2k\pi,k \in \mathbf{Z}\}$ + + +040096 +$\dfrac 43 \pi$ + + +040097 +\textcircled{4} + + +040098 +C + + +040099 +$\dfrac{-2\sqrt{2}-\sqrt{3}}6$ + + +040100 +$-\dfrac 7{25}$ + + +040101 +$-\dfrac {\pi}3$ + + +040102 +$(-\dfrac {12}{13}, \dfrac{5}{13})$ + + +040103 +$(\dfrac {5-12\sqrt{3}}{2}, \dfrac{12-5\sqrt{3}}{2})$ + + +040104 +略 + + +040105 +$\dfrac {171} {221}, -\dfrac {21} {221}$ + + +040106 +$\{-\pi\}$ + + +040107 +$\dfrac{8\sqrt{2}-3}{15}$ + + +040108 +$\sin \theta$ + + +040109 +$-\dfrac{56}{65}$ + + +040110 +$\dfrac {\pi}4$ + + +040111 +略 + + +040112 +略 + + +040181 +$\dfrac 7{25}$ + + +040182 +$-\dfrac{\pi}3+2k\pi,k \in \mathbf{Z}$ + + +040183 +$\dfrac{4\sqrt{3}-3}{10}$ + + +040184 +$\dfrac 17$ + + +040185 +$4\sqrt{2} \sin(\alpha+\dfrac {7}{4}\pi))$ + + +040186 +$3$ + + +040187 +$\dfrac 32$ + + +040188 +$\sqrt{3}$ + + +040189 +$2$ + + +040190 +$\dfrac {13}{18}$ + + +040191 +$\dfrac{7}{4}\pi$ + + +040192 +$\dfrac{64}{25}$ + + +040193 +C + + +040194 +A + + +040195 +B + + +040196 +C + + +040197 +$-\dfrac{\pi}6$ + + +040198 +$\dfrac 23 \pi$ + + +040199 +$\dfrac 32$ + + +040200 +$\sqrt{1-k}$ + + +040201 +$-\dfrac{484}{729}$ + + +040131 +$-\dfrac{25}{12}$ + + +040132 +$\dfrac 52$ + + +040133 +$-\dfrac{\pi}4$ + + +040134 +$-\dfrac 12$ + + +040135 +$\dfrac 6{19}$ + + +040136 +$-\dfrac {\sqrt{3}}3$ + + +040137 +$\dfrac 3{22}$ + + +040138 +$4$ + + +040139 +$-\dfrac{63}{65}$ + + +040226 +$\dfrac 49 \sqrt{2}$ + + +040227 +$\sin \theta \cos \theta$ + + +040228 +$-\dfrac1{16}$ + + +040229 +$\dfrac 32$ + + +040230 +$\dfrac{13}{18}$ + + +040231 +$-2-\sqrt{7}$ + + +040232 +$\sin{\dfrac{\alpha}2}$ + + +040233 +$0$ + + +040234 +$\dfrac{120}{169}$ + + +040235 +$3$或$5$ + + +040236 +$\pi-\arcsin{\dfrac{24}{25}}$ + + +040237 +$\arcsin{\dfrac{3\sqrt{10}}{10}}$或$\arcsin{\dfrac{\sqrt{10}}{10}}$ + + +040238 +$60^{\circ}$或$120^{\circ}$ + + +040239 +$\dfrac 23 \pi$ + + +040240 +$8$ + + +040241 +\textcircled{4} + + +040242 +$\dfrac 35$或$\dfrac{24}{25}$或$\dfrac{3\sqrt{10}}{10}$或$\dfrac{\sqrt{10}}{10}$ + + +040243 +(1)$\angle A=75^{\circ}, \angle B=45^{\circ}, a=\sqrt{2}+\sqrt{6}$\\ +(2) $\angle B=60^{\circ}, \angle C=75^{\circ}, c=\sqrt{6}+3\sqrt{2}$或 +$\angle B=120^{\circ}, \angle C=15^{\circ}, c=3\sqrt{2} - \sqrt{6}$ + + +040244 +$\dfrac 12$ + + +040245 +$\dfrac 12 \pm \dfrac{\sqrt{6}}5$ + + +040246 +$-\dfrac7{25}$ + + +040247 +$\dfrac {\sqrt{2}} 2 +\dfrac 14$ + + +040248 +$90^\circ$ + + +040249 +$\dfrac 1{a}$ + + +040250 +$-\dfrac{16}{65}$ + + +040251 +$\dfrac{24}{13}$ + + +040252 +$\dfrac{\sqrt{11}}{6}$ + + +040253 +直角三角形 + + +040254 +$120^\circ$ + + +040255 +$-\dfrac{48}{49}$ + + +040256 +等边三角形 + + +040257 +等腰三角形 + + +040258 +等腰或直角三角形 + + +040259 +$30^\circ$ + + +040260 +$30^\circ$或$90^\circ$或$150^\circ$ + + +040261 +$2\sqrt{7}$ + + +040262 +$\dfrac 12$ + + +040263 +$(0,\dfrac{\pi}4]$ + + +040264 +(1) $\dfrac 23 \pi$; (2) 等腰钝角三角形 + + +040265 +(1) $\dfrac{\sqrt{3}}6$; (2) $\dfrac{\sqrt{39}+\sqrt{3}}2$ + + +040266 +$\{x|\dfrac{\pi}6+2k\pi \le x \le \dfrac 56 \pi+2k\pi, k \in \mathbb{Z} \}$ + + +040267 +$[0,3)$ + + +040268 +$4$ + + +040269 +$\pi$ + + +040270 +$\pi$ + + +040271 +$\dfrac{\pi}{2}$ + + +040272 +$-\sin{\dfrac 12 -1}$ + + +040273 +\textcircled{2}\textcircled{3}\textcircled{5} + + +040274 +等腰直角三角形 + + +040275 +$\{x|\dfrac{\pi}4+2k\pi \le x \le \dfrac 45 \pi+2k\pi, k \in \mathbb{Z} \}$ + + +040276 +$4\pi$ + + +040277 +$\dfrac{\pi}{2}$ + + +040278 +$\sqrt{5}$ + + +040279 +$12$ + + +040280 +$6+\sqrt{15}$ + + +040281 +\textcircled{3} \textcircled{4} + + +040282 +$(1)b=1,c=\sqrt{13}$;\\ +$(2)$等腰三角形或直角三角形 + + +040396 +$\{x|2k\pi+\dfrac{\pi}4=latex,scale= 0.5]\n\\foreach \\i in {0,1,...,8}\n{\\draw [dashed] (0,\\i) -- (8,\\i) (\\i,0) -- (\\i,8);};\n\\filldraw (1,2) node [below left] {$A$} coordinate (A) circle (0.06);\n\\filldraw (7,3) node [below left] {$B$} coordinate (B) circle (0.06);\n\\filldraw (3,5) node [below left] {$C$} coordinate (C) circle (0.06);\n\\draw [->] (8.5,5) -- (8.5,7) node [right] {北};\n\\draw [->] (A) --++ (0,2) node [above left] {$E$} coordinate (E);\n\\draw [->] (B) --++ (-2,2) node [above right] {$F$} coordinate (F);\n\\draw [->] (C) --++ (2,-2) node [below left] {$G$} coordinate (G);\n\\end{tikzpicture}\n\\end{center}", "solution": "", "duration": -1, "usages": [], @@ -516872,7 +516874,7 @@ "第五单元" ], "genre": "选择题", - "ans": "$\\overrightarrow{AC}$", + "ans": "C", "solution": "", "duration": -1, "usages": [ @@ -516887,7 +516889,8 @@ ], "origin": "2025届高一下校本作业", "edit": [ - "20230209\t王伟叶" + "20230209\t王伟叶", + "20230628\t王伟叶" ], "same": [], "related": [], @@ -517058,7 +517061,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (0,0) -- (1,0.7) node [midway, above] {$\\overline{a}$};\n\\draw [->] (1.2,0) -- (2,0) node [midway, above] {$\\overline{b}$};\n\\draw [->] (3,0) -- (2.4,0.6) node [midway, above] {$\\overline{c}$};\n\\filldraw (6,0) node [below] {$O_1$} coordinate (O_1) circle (0.03);\n\\filldraw (9,0) node [below] {$O_2$} coordinate (O_2) circle (0.03);\n\\draw [dashed,->] (O_1) --++ (1,0.7) node[midway,below]{$\\overrightarrow{a}$} coordinate (P_1);\n\\draw [dashed,->] (P_1) --++ (-0.6,0.6) node [midway,above right] {$\\overrightarrow{c}$} coordinate (Q_1);\n\\draw [dashed,->] (Q_1) --++ (-0.8,0) node [midway, above] {$-\\overrightarrow{b}$} coordinate (R_1);\n\\draw [dashed,->] (O_1) -- (Q_1);\n\\draw [ultra thick,->] (O_1)--(R_1);\n\\draw [dashed,->] (O_2) --++ (1,0.7) node[midway,below]{$\\overrightarrow{a}$} coordinate (P_2);\n\\draw [dashed,->] (P_2) --++ (-0.6,0.6) node [midway,above right] {$\\overrightarrow{c}$} coordinate (Q_2);\n\\draw [dashed,->] (Q_2) --++ (-0.8,0) node [midway, above] {$-\\overrightarrow{b}$} coordinate (R_2);\n\\draw [dashed,->] (P_2) -- (R_2);\n\\draw [ultra thick,->] (O_2)--(R_2);\n\\end{tikzpicture}\n\\end{center}", "solution": "", "duration": -1, "usages": [ @@ -518528,7 +518531,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -518684,7 +518687,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -519686,7 +519689,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -519748,7 +519751,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -519780,7 +519783,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -520164,7 +520167,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\mathbf{Z} \\subset \\mathbf{Q} \\subset \\mathbf{R} \\subset \\mathbf{C}$", "solution": "", "duration": -1, "usages": [ @@ -520195,7 +520198,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "D", "solution": "", "duration": -1, "usages": [ @@ -520226,7 +520229,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -520257,7 +520260,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -520288,7 +520291,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$x$轴", "solution": "", "duration": -1, "usages": [ @@ -520319,7 +520322,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\{-4\\}$", "solution": "", "duration": -1, "usages": [ @@ -520350,7 +520353,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$m=7,n=-8$", "solution": "", "duration": -1, "usages": [ @@ -520381,7 +520384,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $m=-2$或$3$; (2) $m \\neq -2, m \\neq -3, m \\neq -5, m \\neq -5 $; (3) 无解; (4)$m=-3$.", "solution": "", "duration": -1, "usages": [ @@ -520412,7 +520415,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{1}{2}$", "solution": "", "duration": -1, "usages": [ @@ -520443,7 +520446,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $x=-8,y=3$或$x=3,y=-8$.\\\\\n(2) $x=2,y=2$或$x=2,y=-1$或$x=\\dfrac{1}{2},y=2$或$x=\\dfrac{1}{2},y=-1$.", "solution": "", "duration": -1, "usages": [ @@ -520474,7 +520477,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -520505,7 +520508,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "\\textcircled{1} \\textcircled{3}", "solution": "", "duration": -1, "usages": [ @@ -520537,7 +520540,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "第二象限, 第四象限", "solution": "", "duration": -1, "usages": [ @@ -520569,7 +520572,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$(0,-3),(-4,-1)$", "solution": "", "duration": -1, "usages": [ @@ -520601,7 +520604,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$5,6,\\sqrt{5}$.", "solution": "", "duration": -1, "usages": [ @@ -520633,7 +520636,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$-2+3\\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -520665,7 +520668,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$(1,-3)$", "solution": "", "duration": -1, "usages": [ @@ -520697,7 +520700,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "C", "solution": "", "duration": -1, "usages": [ @@ -520729,7 +520732,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "\\textcircled{2},\\textcircled{3}", "solution": "", "duration": -1, "usages": [ @@ -520761,7 +520764,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $m=3$或$-2$; (2) $m=3$或$5$; (3) $-2=latex, scale = 0.4]\n\\draw [->] (-4.5,0) -- (4.5,0) node [below] {$x$};\n\\draw [->] (0,-4.5) -- (0,4.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw (0,0) circle (3);\n\\draw (3,0) node [below right] {$3$};\n\\end{tikzpicture}; (2) \\begin{tikzpicture}[>=latex]\n\\draw [->] (0,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,0) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\filldraw [pattern = north east lines, draw = white] (1,1) rectangle (2,2);\n\\draw [dashed] (1,1) rectangle (2,2);\n\\foreach \\i in {1,2}\n{\\draw [dashed] (\\i,1) -- (\\i,0) node [below] {$\\i$};\n\\draw [dashed] (1,\\i) -- (0,\\i) node [left] {$\\i$};}\n\\end{tikzpicture}", "solution": "", "duration": -1, "usages": [ @@ -521145,7 +521148,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$z_2=-2\\sqrt{5}+\\sqrt{5} \\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -521177,7 +521180,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $0\\leq m \\leq 3$; \\\\\n(2) 当$m=\\dfrac{3}{2}$时, $z$的模的最小值为$\\dfrac{\\sqrt{10}}{2}$.", "solution": "", "duration": -1, "usages": [ @@ -521209,7 +521212,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -521241,7 +521244,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "\\textcircled{3} ,\\textcircled{5}", "solution": "", "duration": -1, "usages": [ @@ -521273,7 +521276,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "\\textcircled{2} ,\\textcircled{5}", "solution": "", "duration": -1, "usages": [ @@ -521305,7 +521308,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$4,1+\\sqrt{3}\\mathrm{i}, 1-\\sqrt{3}\\mathrm{i} $.", "solution": "", "duration": -1, "usages": [ @@ -521337,7 +521340,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\mathrm{i},-\\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -521368,7 +521371,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\sqrt{-a}\\mathrm{i},-\\sqrt{-a}\\mathrm{i}$.", "solution": "", "duration": -1, "usages": [ @@ -521399,7 +521402,7 @@ "第五单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -521430,7 +521433,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $\\dfrac{\\sqrt{10}}{2}+\\dfrac{\\sqrt{10}}{2}\\mathrm{i},-\\dfrac{\\sqrt{10}}{2}-\\dfrac{\\sqrt{10}}{2}\\mathrm{i}$;\\\\\n(2) $3-2\\mathrm{i},-3+2\\mathrm{i}$.", "solution": "", "duration": -1, "usages": [ @@ -521461,7 +521464,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $(x-1)^2+y^2=1$;\\\\\n(2) $[0,2]$.", "solution": "", "duration": -1, "usages": [ @@ -521492,7 +521495,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$3$", "solution": "", "duration": -1, "usages": [ @@ -521523,7 +521526,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$z_1=\\dfrac{\\sqrt{3}}{2}-\\dfrac{1}{2}\\mathrm{i}, z_2=-\\dfrac{\\sqrt{3}}{2}-\\dfrac{1}{2}\\mathrm{i}$\n或$z_1=-\\dfrac{\\sqrt{3}}{2}-\\dfrac{1}{2}\\mathrm{i}, z_2=\\dfrac{\\sqrt{3}}{2}-\\dfrac{1}{2}\\mathrm{i}$.", "solution": "", "duration": -1, "usages": [ @@ -521554,7 +521557,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$-60+20\\mathrm{i}$或$60-20\\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -521585,7 +521588,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\sqrt{2}$", "solution": "", "duration": -1, "usages": [ @@ -521616,7 +521619,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "\\textcircled{1},\\textcircled{3}", "solution": "", "duration": -1, "usages": [ @@ -521644,7 +521647,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-\\dfrac{2}{3},\\dfrac{8}{9})$", "solution": "", "duration": -1, "usages": [ @@ -521672,7 +521675,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-1,1-\\mathrm{i})$", "solution": "", "duration": -1, "usages": [ @@ -521700,7 +521703,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\sqrt{2}$", "solution": "", "duration": -1, "usages": [ @@ -521728,7 +521731,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$(0,4)$", "solution": "", "duration": -1, "usages": [ @@ -521756,7 +521759,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\{-2\\sqrt{2},2\\sqrt{2}\\}$", "solution": "", "duration": -1, "usages": [ @@ -521784,7 +521787,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $\\{-\\dfrac{3\\mathrm{i}}{2},\\dfrac{3\\mathrm{i}}{2} \\}$;\\\\\n(2) $\\{-2+2\\sqrt{2}\\mathrm{i},-2-2\\sqrt{2}\\mathrm{i}\\}$;\\\\\n(3) $\\{\\dfrac{-1+\\sqrt{3}\\mathrm{i}}{2},\\dfrac{-1-\\sqrt{3}\\mathrm{i}}{2} \\}$;\\\\\n(4) $\\{1,\\mathrm{i}\\}$.", "solution": "", "duration": -1, "usages": [ @@ -521812,7 +521815,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $[x-(-1+\\sqrt{2}\\mathrm{i})y][x-(-1-\\sqrt{2}\\mathrm{i})y]$;\\\\\n(2) $(x+y)(x-\\dfrac{1+\\sqrt{3}\\mathrm{i}}{2}y)(x-\\dfrac{1-\\sqrt{3}\\mathrm{i}}{2}y)$.", "solution": "", "duration": -1, "usages": [ @@ -521840,7 +521843,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\dfrac{\\sqrt{3}+3\\mathrm{i}}{2},\\dfrac{\\sqrt{3}-3\\mathrm{i}}{2}$", "solution": "", "duration": -1, "usages": [ @@ -521868,7 +521871,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$2,-2$", "solution": "", "duration": -1, "usages": [ @@ -521896,7 +521899,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $-\\dfrac{3}{4}$; (2) $6$或$-2$; (3) $\\dfrac{9}{2}$或$4-2\\sqrt{13}$.", "solution": "", "duration": -1, "usages": [ @@ -521924,7 +521927,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $4+\\mathrm{i}$或$4-\\mathrm{i}$;\\\\\n(2) $2$或$-2$或$2\\mathrm{i}$或$-2\\mathrm{i}$;\\\\\n(3) $\\dfrac{-3+\\sqrt{3}\\mathrm{i}}{2}$或$\\dfrac{-3-\\sqrt{3}\\mathrm{i}}{2}$;\\\\\n(4) $2$或$2\\mathrm{i}$.", "solution": "", "duration": -1, "usages": [ @@ -521952,7 +521955,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $(a+b+c\\mathrm{i})(a+b-c\\mathrm{i})$;\n(2) $(x+\\sqrt{5}\\mathrm{i})(x-\\sqrt{5}\\mathrm{i})(x+\\sqrt{2})(x-\\sqrt{2})$.", "solution": "", "duration": -1, "usages": [ @@ -521980,7 +521983,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "当$p=3$时,方程的解为$-3,-1-\\mathrm{i}$;\n当$p=1$时,方程的解为$-1,-3-\\mathrm{i}$.", "solution": "", "duration": -1, "usages": [ @@ -522008,7 +522011,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$x^2-6x+10=0$", "solution": "", "duration": -1, "usages": [ @@ -522036,7 +522039,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\{ -4,4,-2\\sqrt{6},2\\sqrt{6} \\}$", "solution": "", "duration": -1, "usages": [ @@ -522064,7 +522067,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $z_1=-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}\\mathrm{i}}{2},z_2=-\\dfrac{1}{2}-\\dfrac{\\sqrt{3}\\mathrm{i}}{2}$或$z_1=-\\dfrac{1}{2}-\\dfrac{\\sqrt{3}\\mathrm{i}}{2},z_2=-\\dfrac{1}{2}+\\dfrac{\\sqrt{3}\\mathrm{i}}{2}$;\\\\\n(2) $[\\sqrt{13},4)$", "solution": "", "duration": -1, "usages": [ @@ -522092,7 +522095,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$1-\\sqrt{2}$", "solution": "", "duration": -1, "usages": [ @@ -522120,7 +522123,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "(1) $2(\\cos \\dfrac{3\\pi}{2}+\\mathrm{i}\\sin \\dfrac{3\\pi}{2})$;\\\\\n(2) $\\cos \\pi+\\mathrm{i}\\sin\\pi$;\\\\\n(3) $\\sqrt{2}(\\cos \\dfrac{3\\pi}{4}+\\mathrm{i}\\sin \\dfrac{3\\pi}{4})$;\\\\\n(4) $2(\\cos \\dfrac{4\\pi}{3}+\\mathrm{i}\\sin \\dfrac{4\\pi}{3})$.", "solution": "", "duration": -1, "usages": [ @@ -522148,7 +522151,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $2\\pi-\\arccos \\dfrac{3}{5}$;\n(2) $\\cos \\dfrac{9\\pi}{5}+\\mathrm{i}\\sin \\dfrac{9\\pi}{5}$.", "solution": "", "duration": -1, "usages": [ @@ -522176,7 +522179,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -522204,7 +522207,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $\\sqrt{2}(\\cos \\dfrac{\\pi}{4}+\\mathrm{i}\\sin \\dfrac{\\pi}{4})$;\\\\\n(2) $\\dfrac{\\pi}{4}$.", "solution": "", "duration": -1, "usages": [ @@ -522232,7 +522235,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $15\\sqrt{2}+15\\sqrt{2}\\mathrm{i}$;\n(2) $\\dfrac{\\sqrt{3}}{6}+\\dfrac{\\mathrm{i}}{2}$.", "solution": "", "duration": -1, "usages": [ @@ -522260,7 +522263,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $-2^{10}$; \\\\\n(2) $2^{11} (-\\dfrac{\\sqrt{3}}{2}-\\dfrac{\\mathrm{i}}{2})$.", "solution": "", "duration": -1, "usages": [ @@ -522288,7 +522291,7 @@ "第五单元" ], "genre": "填空题", - "ans": "", + "ans": "$-\\sqrt{3}+\\mathrm{i}$", "solution": "", "duration": -1, "usages": [ @@ -522316,7 +522319,7 @@ "第五单元" ], "genre": "解答题", - "ans": "", + "ans": "$18$", "solution": "", "duration": -1, "usages": [ @@ -522344,7 +522347,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "(1) 假命题; (2) 假命题; (3) 假命题; (4) 假命题.", "solution": "", "duration": -1, "usages": [ @@ -522375,7 +522378,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-\\dfrac{1}{2}$; $\\pi-\\arctan\\dfrac{1}{2}$.", "solution": "", "duration": -1, "usages": [ @@ -522406,7 +522409,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{3}{2-a}$; $\\pi-\\arctan\\dfrac{3}{a-2}$.", "solution": "", "duration": -1, "usages": [ @@ -522437,7 +522440,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{3}{2-a}$; $\\arctan\\dfrac{3}{2-a}$.", "solution": "", "duration": -1, "usages": [ @@ -522468,7 +522471,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[1,\\sqrt{3}]$", "solution": "", "duration": -1, "usages": [ @@ -522499,7 +522502,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[-\\dfrac{4}{3},\\dfrac{4}{3}]$", "solution": "", "duration": -1, "usages": [ @@ -522530,7 +522533,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{2\\pi}{5}$", "solution": "", "duration": -1, "usages": [ @@ -522561,7 +522564,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{\\pi}{10}$", "solution": "", "duration": -1, "usages": [ @@ -522592,7 +522595,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{5}{2}$", "solution": "", "duration": -1, "usages": [ @@ -522623,7 +522626,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-\\dfrac{\\sqrt{3}}{3}$", "solution": "", "duration": -1, "usages": [ @@ -522654,7 +522657,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-\\dfrac{\\sqrt{3}}{3}$", "solution": "", "duration": -1, "usages": [ @@ -522685,7 +522688,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$4$或$-\\dfrac{3}{2}$", "solution": "", "duration": -1, "usages": [ @@ -522716,7 +522719,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 直线$OB$和$AC$的斜率分别为$1,-1$;\n(2) $1,-1$.", "solution": "", "duration": -1, "usages": [ @@ -522747,7 +522750,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 当$k>0$时, $\\alpha=\\arctan k$;\n当$k<0$时, $\\alpha=\\pi-\\arctan(-k)$;", "solution": "", "duration": -1, "usages": [ @@ -522778,7 +522781,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -522809,7 +522812,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-\\infty,-\\sqrt{3})$", "solution": "", "duration": -1, "usages": [ @@ -522841,7 +522844,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[1,4]$", "solution": "", "duration": -1, "usages": [ @@ -522873,7 +522876,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\theta-\\pi$", "solution": "", "duration": -1, "usages": [ @@ -522905,7 +522908,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[\\dfrac{2\\pi}{3},\\pi)$", "solution": "", "duration": -1, "usages": [ @@ -522937,7 +522940,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{3\\pi}{2}-\\theta$", "solution": "", "duration": -1, "usages": [ @@ -522969,7 +522972,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$a \\neq 0$", "solution": "", "duration": -1, "usages": [ @@ -523001,7 +523004,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[0,\\dfrac{\\pi}{4}]\\cup\n[\\pi-\\arctan 2,\\pi)$", "solution": "", "duration": -1, "usages": [ @@ -523033,7 +523036,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $|AB|=sec^2 \\alpha$; (2) $2\\alpha$.", "solution": "", "duration": -1, "usages": [ @@ -523065,7 +523068,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$a \\neq \\dfrac{1}{11}$", "solution": "", "duration": -1, "usages": [ @@ -523097,7 +523100,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-a$; $\\pi-\\arctan a$.", "solution": "", "duration": -1, "usages": [ @@ -523129,7 +523132,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{1+k_1}{1-k_1}$", "solution": "", "duration": -1, "usages": [ @@ -523161,7 +523164,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{1+\\sqrt{3}k_1}{\\sqrt{3}-k_1}$", "solution": "", "duration": -1, "usages": [ @@ -523193,7 +523196,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -523225,7 +523228,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "设$x$轴正方向的单位向量为$\\overrightarrow {i}$,\\\\\n当$<\\overrightarrow {i},\\overrightarrow {d}>=0$时, 投影为$\\overrightarrow {d}$,数量投影为$|\\overrightarrow {d}|$;\\\\\n当$<\\overrightarrow {i},\\overrightarrow {d}>=\\pi$时,投影为$\\overrightarrow {d}$,数量投影为$-|\\overrightarrow {d}|$;\\\\\n当$<\\overrightarrow {i},\\overrightarrow {d}>$为锐角时,投影为$(\\dfrac{|\\overrightarrow {d}|}{\\sqrt{1+k^2}},0)$,数量投影为$\\dfrac{|\\overrightarrow {d}|}{\\sqrt{1+k^2}}$;\\\\\n当$<\\overrightarrow {i},\\overrightarrow {d}>$为钝角时,投影为$(-\\dfrac{|\\overrightarrow {d}|}{\\sqrt{1+k^2}},0)$,数量投影为$-\\dfrac{|\\overrightarrow {d}|}{\\sqrt{1+k^2}}$.", "solution": "", "duration": -1, "usages": [ @@ -523257,7 +523260,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$y+2=\\sqrt{3}(x-1)$", "solution": "", "duration": -1, "usages": [ @@ -523289,7 +523292,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{y+2}{3}=\\dfrac{x-1}{2}$", "solution": "", "duration": -1, "usages": [ @@ -523321,7 +523324,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$y=\\dfrac{5}{2}x=5$", "solution": "", "duration": -1, "usages": [ @@ -523353,7 +523356,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{7}{2}$", "solution": "", "duration": -1, "usages": [ @@ -523385,7 +523388,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$y-5=\\dfrac{3}{4}(x-3)$或$y-5=-\\dfrac{3}{4}(x-3)$", "solution": "", "duration": -1, "usages": [ @@ -523417,7 +523420,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x=-2$", "solution": "", "duration": -1, "usages": [ @@ -523449,7 +523452,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\pi-\\arctan 5$", "solution": "", "duration": -1, "usages": [ @@ -523481,7 +523484,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[-2\\sqrt{3},0) \\cup (0,2\\sqrt{3}]$", "solution": "", "duration": -1, "usages": [ @@ -523513,7 +523516,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $2x+y-6=0$; $x-y-3=0$; $x+2y-6=0$;\\\\\n(2) $x+y-4=0$; $x-3=0$; $y-1=0$.", "solution": "", "duration": -1, "usages": [ @@ -523545,7 +523548,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$AD$与$CD$边所在的直线方程分别为\n$2x+y-4=0,x-y+4=0$.", "solution": "", "duration": -1, "usages": [ @@ -523577,7 +523580,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$2x-3y+6=0$或$x-2y+5=0$", "solution": "", "duration": -1, "usages": [ @@ -523609,7 +523612,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$4x+y-6=0$或$3x+2y-7=0$", "solution": "", "duration": -1, "usages": [ @@ -523641,7 +523644,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $[-2,4]$; (2) $[\\dfrac{3}{4},6]$", "solution": "", "duration": -1, "usages": [ @@ -523673,7 +523676,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$3(x-2+4(y+3)=0$", "solution": "", "duration": -1, "usages": [ @@ -523705,7 +523708,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$3(x-\\dfrac{7}{2})+2(y-2)=0$", "solution": "", "duration": -1, "usages": [ @@ -523737,7 +523740,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-1, -\\sqrt{3}-1$", "solution": "", "duration": -1, "usages": [ @@ -523769,7 +523772,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$2x-3y-6=0$", "solution": "", "duration": -1, "usages": [ @@ -523801,7 +523804,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x-y-3=0$或$x+y+1=0$", "solution": "", "duration": -1, "usages": [ @@ -523833,7 +523836,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$3x+y-6=0$", "solution": "", "duration": -1, "usages": [ @@ -523865,7 +523868,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "C", "solution": "", "duration": -1, "usages": [ @@ -523897,7 +523900,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -523929,7 +523932,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "D", "solution": "", "duration": -1, "usages": [ @@ -523961,7 +523964,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$3x-y-6=0,x+y-6=0$", "solution": "", "duration": -1, "usages": [ @@ -523993,7 +523996,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$3x+2y-12=0,4x-3y-3=0,2x+7y-21=0.$", "solution": "", "duration": -1, "usages": [ @@ -524025,7 +524028,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\dfrac{1}{8}$", "solution": "", "duration": -1, "usages": [ @@ -524057,7 +524060,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\dfrac{11}{5}$", "solution": "", "duration": -1, "usages": [ @@ -524089,7 +524092,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $(-\\infty,\\dfrac{4}{3}] \\cup [\\dfrac{5}{3},+\\infty)$;\\\\\n(2) $(-5,-2)$.", "solution": "", "duration": -1, "usages": [ @@ -524121,7 +524124,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $5x-y+5=0$; (2) $5x-y-10\\sqrt{2}=0$或$5x-y+10\\sqrt{2}=0$.", "solution": "", "duration": -1, "usages": [ @@ -524153,7 +524156,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$3$", "solution": "", "duration": -1, "usages": [ @@ -524184,7 +524187,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-1$, $1$, $(-\\infty,-1)\\cup (-1,1)\\cup (1,+\\infty)$", "solution": "", "duration": -1, "usages": [ @@ -524215,7 +524218,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-8$", "solution": "", "duration": -1, "usages": [ @@ -524246,7 +524249,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "D", "solution": "", "duration": -1, "usages": [ @@ -524277,7 +524280,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -524308,7 +524311,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -524339,7 +524342,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$1$", "solution": "", "duration": -1, "usages": [ @@ -524370,7 +524373,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -524401,7 +524404,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$2x-y-5=0$", "solution": "", "duration": -1, "usages": [ @@ -524432,7 +524435,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(-1,1)$", "solution": "", "duration": -1, "usages": [ @@ -524463,7 +524466,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\sqrt{449}$", "solution": "", "duration": -1, "usages": [ @@ -524494,7 +524497,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 重合;(2) 相交, $\\arccos\\dfrac{19\\sqrt{370}}{370}$; (3) 相交, $\\arctan \\dfrac{3}{2}$.", "solution": "", "duration": -1, "usages": [ @@ -524525,7 +524528,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{1}{2}$", "solution": "", "duration": -1, "usages": [ @@ -524556,7 +524559,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -524587,7 +524590,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$y-4=0$或$4x+3y-24=0$", "solution": "", "duration": -1, "usages": [ @@ -524618,7 +524621,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -524649,7 +524652,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "C", "solution": "", "duration": -1, "usages": [ @@ -524680,7 +524683,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$x-2y-6=0,2x+y-7=0$.", "solution": "", "duration": -1, "usages": [ @@ -524711,7 +524714,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x+6y=0$", "solution": "", "duration": -1, "usages": [ @@ -524742,7 +524745,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$2x+9y-65=0$", "solution": "", "duration": -1, "usages": [ @@ -524773,7 +524776,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "入射光线:$3x-y-12=0$, 反射光线: $x-3y-14=0$;\n入射光线:$x-3y+4=0$, 反射光线: $3x-y+6=0$.", "solution": "", "duration": -1, "usages": [ @@ -524804,7 +524807,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-5$;$8$;$(-\\infty,-5) \\cup (-5,8) \\cup (8,+\\infty)$.", "solution": "", "duration": -1, "usages": [ @@ -524835,7 +524838,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(1,7)$", "solution": "", "duration": -1, "usages": [ @@ -524866,7 +524869,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "相交", "solution": "", "duration": -1, "usages": [ @@ -524897,7 +524900,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "D", "solution": "", "duration": -1, "usages": [ @@ -524928,7 +524931,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -524959,7 +524962,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "与直线$x+4 y-7=0$垂直的直线方程为$4x-y-5=0$;\n与直线$x+4 y-7=0$平行的直线方程为$x+4y+3=0$.", "solution": "", "duration": -1, "usages": [ @@ -524990,7 +524993,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $(-b,a)$", "solution": "", "duration": -1, "usages": [ @@ -525021,7 +525024,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(\\dfrac{2}{5},\\dfrac{4}{5})$", "solution": "", "duration": -1, "usages": [ @@ -525052,7 +525055,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(\\dfrac{2}{3},\\dfrac{8}{3})$", "solution": "", "duration": -1, "usages": [ @@ -525083,7 +525086,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "当$B(2,1)$或$B(-2,1)$时, $\\triangle ABC$的面积的最小值为$8$.", "solution": "", "duration": -1, "usages": [ @@ -525114,7 +525117,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$7x-2y-11=0$", "solution": "", "duration": -1, "usages": [ @@ -525145,7 +525148,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{8\\sqrt{13}}{13}$", "solution": "", "duration": -1, "usages": [ @@ -525177,7 +525180,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{9\\sqrt{10}}{20}$", "solution": "", "duration": -1, "usages": [ @@ -525209,7 +525212,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$4x+3y+5=0$或$4x+3y-5=0$", "solution": "", "duration": -1, "usages": [ @@ -525241,7 +525244,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x-y=0$或$x-y-4=0$", "solution": "", "duration": -1, "usages": [ @@ -525273,7 +525276,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{\\pi}{6}$", "solution": "", "duration": -1, "usages": [ @@ -525305,7 +525308,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{13}{5}$", "solution": "", "duration": -1, "usages": [ @@ -525337,7 +525340,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "C", "solution": "", "duration": -1, "usages": [ @@ -525369,7 +525372,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -525401,7 +525404,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$x+2y-9=0,2x-y+5=0,2x-y-7=0$.", "solution": "", "duration": -1, "usages": [ @@ -525433,7 +525436,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$3$或$-4$", "solution": "", "duration": -1, "usages": [ @@ -525465,7 +525468,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [ @@ -525497,7 +525500,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(1,0)$", "solution": "", "duration": -1, "usages": [ @@ -525529,7 +525532,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$x+7y-15=0$或$7x-y-5=0$", "solution": "", "duration": -1, "usages": [ @@ -525561,7 +525564,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(0,3\\sqrt{2}]$; $x+y-8=0.$", "solution": "", "duration": -1, "usages": [ @@ -525592,7 +525595,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$5x+6y=0$或$11x+2y=0$", "solution": "", "duration": -1, "usages": [ @@ -525623,7 +525626,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$2x+y-5=0$或$x-2y+5=0$", "solution": "", "duration": -1, "usages": [ @@ -525654,7 +525657,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$[-1,1]$", "solution": "", "duration": -1, "usages": [ @@ -525685,7 +525688,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(8,11)$", "solution": "", "duration": -1, "usages": [ @@ -525716,7 +525719,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(\\dfrac{2}{5},\\dfrac{19}{5})$", "solution": "", "duration": -1, "usages": [ @@ -525747,7 +525750,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x+2y+9=0$", "solution": "", "duration": -1, "usages": [ @@ -525778,7 +525781,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$2x+y-3=0$; $x-2y+3=0$.", "solution": "", "duration": -1, "usages": [ @@ -525809,7 +525812,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\sqrt{5}$", "solution": "", "duration": -1, "usages": [ @@ -525840,7 +525843,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $2x+3y+1=0$; \\\\\n(2) $2x+3y-1=0$; \\\\\n(3) $2x-3y-1=0$; \\\\\n(4) $3x-2y-1=0$; \\\\\n(5) $3x-2y+1=0$. \\\\", "solution": "", "duration": -1, "usages": [ @@ -525871,7 +525874,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$P(-\\dfrac{7}{2},0)$, $Q(-\\dfrac{7}{3},\\dfrac{7}{3})$", "solution": "", "duration": -1, "usages": [ @@ -525902,7 +525905,7 @@ "第二单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 正, 图略; (2) 正, 图略", "solution": "", "duration": -1, "usages": [], @@ -525946,7 +525949,7 @@ "第二单元" ], "genre": "解答题", - "ans": "", + "ans": "证明略", "solution": "", "duration": -1, "usages": [], @@ -528312,7 +528315,7 @@ "第五单元" ], "genre": "填空题", - "ans": "$(\\dfrac{3}{5}, \\dfrac{4}{5})$", + "ans": "$(\\dfrac{3}{5}, \\frac{4}{5})$", "solution": "", "duration": -1, "usages": [ @@ -567974,7 +567977,7 @@ "第四单元" ], "genre": "填空题", - "ans": "$3$,$-2$", + "ans": "$3$, $-2$", "solution": "", "duration": -1, "usages": [], @@ -584886,7 +584889,7 @@ "第三单元" ], "genre": "填空题", - "ans": "ABD", + "ans": "\\textcircled{1}\\textcircled{2}\\textcircled{4}", "solution": "", "duration": -1, "usages": [], @@ -584908,7 +584911,7 @@ "第三单元" ], "genre": "填空题", - "ans": "ACD", + "ans": "\\textcircled{1}\\textcircled{3}\\textcircled{4}", "solution": "", "duration": -1, "usages": [], @@ -589491,7 +589494,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x+\\dfrac{3}{2})^2+(y-3)^2=3$", "solution": "", "duration": -1, "usages": [ @@ -589521,7 +589524,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x-\\sqrt{2})^2+(y-1)^3=6$", "solution": "", "duration": -1, "usages": [ @@ -589551,7 +589554,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\dfrac{2}{5}$", "solution": "", "duration": -1, "usages": [ @@ -589581,7 +589584,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x+3)^2+(y-2)^2=4$", "solution": "", "duration": -1, "usages": [ @@ -589611,7 +589614,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x+3)^2+(y-1)^2=5$或$(x+3)^2+(y+1)^2=5$", "solution": "", "duration": -1, "usages": [ @@ -589641,7 +589644,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x+3)^2+(y-2)^2=2$", "solution": "", "duration": -1, "usages": [ @@ -589671,7 +589674,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -589701,7 +589704,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$\\pi$", "solution": "", "duration": -1, "usages": [ @@ -589731,7 +589734,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $a^2+b^2=r^2$;\\\\\n(2) $b=0$;\\\\\n(3) $r=|b|$;\\\\\n(4) $r=|a|=|b|$.", "solution": "", "duration": -1, "usages": [ @@ -589761,7 +589764,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x+1)^2+(y+2)^2=10$", "solution": "", "duration": -1, "usages": [ @@ -589791,7 +589794,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-1)^2+(y+2)^2=2$或$(x-9)^2+(y+18)^2=338$", "solution": "", "duration": -1, "usages": [ @@ -589821,7 +589824,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-4)^2+(y-4)^2=16$或$(x-1)^2+(y+1)^2=1$", "solution": "", "duration": -1, "usages": [ @@ -589851,7 +589854,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 变量$x$和$y$的取值范围分别为$[-2,2]$和$[0,2]$;\\\\\n(2) 变量$x$和$y$的取值范围分别为$[-3,3]$和$[-2,1]$.", "solution": "", "duration": -1, "usages": [ @@ -589881,7 +589884,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 不是圆的方程;\\\\\n(2) 不是圆的方程;\\\\\n(3) 是圆的方程, $(x-2)^2+y^2=4$, 圆心为$(2,0)$, 半径为$2$;\\\\\n(4) 是圆的方程, $(x-\\dfrac{1}{2})^2+(y+\\dfrac{3}{2})^2=\\dfrac{1}{2}$, 圆心为$(\\dfrac{1}{2},-\\dfrac{3}{2})$, 半径为$\\dfrac{\\sqrt{2}}{2}$;\\\\\n(5) 不是圆的方程.", "solution": "", "duration": -1, "usages": [ @@ -589913,7 +589916,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "必要非充分条件", "solution": "", "duration": -1, "usages": [ @@ -589945,7 +589948,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "(1) 点在圆外; (2) 点在圆内; (3) 点在圆内.", "solution": "", "duration": -1, "usages": [ @@ -589977,7 +589980,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$-1$", "solution": "", "duration": -1, "usages": [ @@ -590009,7 +590012,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-\\dfrac{1}{7},1)$", "solution": "", "duration": -1, "usages": [ @@ -590041,7 +590044,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-16,10)$", "solution": "", "duration": -1, "usages": [ @@ -590073,7 +590076,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-1)^2+(y+3)^2=4$", "solution": "", "duration": -1, "usages": [ @@ -590105,7 +590108,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-\\dfrac{a}{2})^2+(y-\\dfrac{b}{2})^2=\\dfrac{a^2+b^2}{4}$", "solution": "", "duration": -1, "usages": [ @@ -590137,7 +590140,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "圆心坐标$(2,1)$,半径为$5$.", "solution": "", "duration": -1, "usages": [ @@ -590169,7 +590172,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-1)^2+(y-2)^2=5$或$(x+1)^2+(y-\\dfrac{4}{3})^2=\\dfrac{25}{9}$", "solution": "", "duration": -1, "usages": [ @@ -590201,7 +590204,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$M_1$在圆内, $M_2$在圆外.", "solution": "", "duration": -1, "usages": [ @@ -590233,7 +590236,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "以$AB$的中点为原点,所在直线为$x$轴,建立直角坐标系,点$P$是以$(\\dfrac{25}{4},0)$为圆心, $\\dfrac{15}{4}$为半径的圆.", "solution": "", "duration": -1, "usages": [ @@ -590265,7 +590268,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "${(\\dfrac{\\sqrt{2}}{2},-\\dfrac{\\sqrt{2}}{2}),(-\\dfrac{\\sqrt{2}}{2},\\dfrac{\\sqrt{2}}{2})}$", "solution": "", "duration": -1, "usages": [ @@ -590294,7 +590297,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x+y=0$", "solution": "", "duration": -1, "usages": [ @@ -590323,7 +590326,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "A", "solution": "", "duration": -1, "usages": [ @@ -590352,7 +590355,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -590381,7 +590384,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(-6,4)$", "solution": "", "duration": -1, "usages": [ @@ -590410,7 +590413,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "相切", "solution": "", "duration": -1, "usages": [ @@ -590439,7 +590442,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(0,3)$", "solution": "", "duration": -1, "usages": [ @@ -590468,7 +590471,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "(1) $(-2,2)$; (2) $[\\sqrt{2},2)$.", "solution": "", "duration": -1, "usages": [ @@ -590497,7 +590500,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) 当实数$-2 \\le k < -\\dfrac{4}{3}$或$0 < k \\le \\dfrac{2}{3}$时, 直线$l$与曲线$\\Gamma$分别有两个公共点;\\\\\n当实数$k$取值范围为$(-\\infty,-2) \\cup \\{0,-\\dfrac{4}{3}\\}\\cup (\\dfrac{2}{3},+\\infty)$;\\\\\n(2) $[-2,2\\sqrt{2}]$;\\\\\n(3) $[-\\dfrac{2\\sqrt{5}}{5},0]$.", "solution": "", "duration": -1, "usages": [ @@ -590526,7 +590529,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$-\\dfrac{\\sqrt{6}}{3},\\dfrac{\\sqrt{6}}{3}$", "solution": "", "duration": -1, "usages": [ @@ -590555,7 +590558,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$[-\\dfrac{3}{4},0]$", "solution": "", "duration": -1, "usages": [ @@ -590584,7 +590587,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(3x-3)^2+(3y-1)^2=16$", "solution": "", "duration": -1, "usages": [ @@ -590613,7 +590616,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-3)^2+(y-1)^2=9$或$(x+3)^2+(y+1)^2=9$", "solution": "", "duration": -1, "usages": [ @@ -590642,7 +590645,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$x-y+4=0,x-y-1=0$", "solution": "", "duration": -1, "usages": [ @@ -590671,7 +590674,7 @@ "第七单元" ], "genre": "选择题", - "ans": "", + "ans": "B", "solution": "", "duration": -1, "usages": [ @@ -590696,7 +590699,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x-4)^2+(y)^2=1$", "solution": "", "duration": -1, "usages": [ @@ -590721,7 +590724,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$x-2y+5=0$", "solution": "", "duration": -1, "usages": [ @@ -590746,7 +590749,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$(x-\\dfrac{24}{5})^2+(y+\\dfrac{18}{5})^2=1$", "solution": "", "duration": -1, "usages": [ @@ -590771,7 +590774,7 @@ "第七单元" ], "genre": "填空题", - "ans": "", + "ans": "$3x-y+1=0$", "solution": "", "duration": -1, "usages": [ @@ -590796,7 +590799,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$(x-6)^2+y^2=4$", "solution": "", "duration": -1, "usages": [ @@ -590821,7 +590824,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $2x+y-5=0$; (2) $2\\sqrt{30}$.", "solution": "", "duration": -1, "usages": [ @@ -590846,7 +590849,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$x^2+y^2-y=0(x \\neq 0)$.", "solution": "", "duration": -1, "usages": [ @@ -590871,7 +590874,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "$\\dfrac{27}{4}$", "solution": "", "duration": -1, "usages": [ @@ -590896,7 +590899,7 @@ "第七单元" ], "genre": "解答题", - "ans": "", + "ans": "(1) $\\dfrac{y}{x}$的最大值和最小值分别为$\\sqrt{3}$, $-\\sqrt{3}$;\\\\\n(2) $x^2+y^2$的最大值和最小值分别为$7+4\\sqrt{3}$, $7-4\\sqrt{3}$;\\\\\n(3) $x-y$的最小值为$-2-\\sqrt{6}$.", "solution": "", "duration": -1, "usages": [