录入2025届周末卷补充题至07并建立题目关联

This commit is contained in:
weiye.wang 2024-01-06 20:27:28 +08:00
parent cf1e59d401
commit 0fbf56e4e6
1 changed files with 285 additions and 1 deletions

View File

@ -506566,7 +506566,9 @@
"20230707\t王伟叶" "20230707\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"023204"
],
"remark": "", "remark": "",
"space": "", "space": "",
"unrelated": [] "unrelated": []
@ -621239,6 +621241,288 @@
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
}, },
"023193": {
"id": "023193",
"content": "圆柱的底面半径为 $4 \\mathrm{cm}$, 它的侧面积为 $64 \\pi \\mathrm{cm}^2$, 那么圆柱的母线长为\\blank{50}$\\mathrm{cm}$.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023194": {
"id": "023194",
"content": "正三棱锥的侧面与底面所成的角为 $60^{\\circ}$, 则棱锥的侧棱与底面所成角的大小为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023195": {
"id": "023195",
"content": "已知斜棱柱高为 $4$, 侧棱与底面成 $30^{\\circ}$ 角, 若用垂直于侧棱的平面截斜棱柱所得截面周长为 $8$ (截面与底面无公共点), 则其侧面积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023196": {
"id": "023196",
"content": "在三棱锥 $S-ABC$ 中, $\\angle ASB=\\angle ASC=\\angle BSC=60^{\\circ}$, 则侧棱 $SA$ 与侧面 $SBC$ 所成的角的大小是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023197": {
"id": "023197",
"content": "直平行六面体的底面是菱形, 分别过两对不柤邻侧棱的两个截面面积是 $3 \\mathrm{cm}^2$ 和 $4 \\mathrm{cm}^2$,则它的侧面积为\\blank{50} $\\mathrm{cm}^2$.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023198": {
"id": "023198",
"content": "已知三棱锥 $P-ABC$, 用``内心''、``外心''或``垂心''填空:\\\\\n(1) 若 $PA, PB, PC$ 与底面所成角都相等, 则顶点 $P$ 在底面的射影是三角形 $ABC$ 的\\blank{50};\\\\\n(2) 若二面角 $P-AB-C$, 二面角 $P-BC-A$, 二面角 $P-AC-B$ 的大小都相等, 且$P$在平面$ABC$上的射影在$\\triangle ABC$的内部, 则顶点 $P$ 在底面的射影是三角形 $ABC$ 的\\blank{50};\\\\\n(3) $PA \\perp BC$, $PB \\perp AC$, $PC \\perp AB$, 则顶点 $P$ 在底面的射影是三角形 $ABC$ 的\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023199": {
"id": "023199",
"content": "一个正四面体的顶点是一个正方体的顶点, 则正方体的表面积是该正四面体表面积的\\blank{50}倍.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023200": {
"id": "023200",
"content": "若正三棱柱的所有棱长均为 $a$, 且其体积为 $16 \\sqrt{3}$, 则侧面积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023201": {
"id": "023201",
"content": "在长方体 $ABCD-A_1B_1C_1D_1$ 中, $AB=1$, $AD=2$, $AA_1=3$, 则直线 $A_1C_1$ 到平面 $ACB_1$ 的距离为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023202": {
"id": "023202",
"content": "定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体, 圆柱也叫该长方体的外接圆柱, 设长方体 $ABCD-A_1B_1C_1D_1$ 的长、宽、高分别为 $a$、$b$、$c$ (其中 $a>b>c$ ), 那么该长方体的外接圆柱侧面积的最大值是\\bracket{20}.\n\\fourch{$\\pi a \\sqrt{b^2+c^2}$}{$\\pi b \\sqrt{a^2+c^2}$}{$\\pi c \\sqrt{a^2+b^2}$}{$\\pi a b c$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023203": {
"id": "023203",
"content": "正四棱柱 $ABCD-A_1B_1C_1D_1$ 的底面边长 $AB=2$, 若异面直线 $A_1A$ 与 $B_1C$ 所成角的大小为 $\\arctan \\dfrac{1}{2}$, 求正四棱柱 $ABCD-A_1B_1C_1D_1$ 的侧面积和体积.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{1}\n\\def\\m{1}\n\\def\\n{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,\\n,0) node [above] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C_1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D_1);\n\\draw (A_1) -- (B_1) -- (C_1) -- (D_1) -- cycle;\n\\draw (A) -- (A_1) (B) -- (B_1) (C) -- (C_1);\n\\draw [dashed] (D) -- (D_1);\n\\draw (B_1)--(C);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023204": {
"id": "023204",
"content": "如图, 四边形 $ABCD$ 为边长是 $4$ 的正方形, 点 $E$、$F$ 分别是 $AB$、$AD$ 的中点, $GC$ 垂直于 $ABCD$ 所在的平面, 且 $GC=2$, 求点 $B$ 到平面 $EFG$ 的距离.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$C$} coordinate (C);\n\\draw (4,0,0) node [right] {$B$} coordinate (B);\n\\draw (4,0,4) node [below] {$A$} coordinate (A);\n\\draw (0,0,4) node [below] {$D$} coordinate (D);\n\\draw (0,2,0) node [above] {$G$} coordinate (G);\n\\draw (G)--(C)--(D)--(A)--(B);\n\\path [name path = BC] (B)--(C);\n\\filldraw ($(A)!0.5!(B)$) circle (0.03) node [right] {$E$} coordinate (E);\n\\filldraw ($(A)!0.5!(D)$) circle (0.03) node [below] {$F$} coordinate (F);\n\\draw (E)--(F)--(G)--cycle;\n\\path [name path = EG] (E)--(G);\n\\path [name path = FG] (F)--(G);\n\\draw [name intersections = {of = EG and BC, by = U}];\n\\draw [name intersections = {of = FG and BC, by = V}];\n\\draw (C)--(V)(U)--(B);\n\\draw [dashed] (U)--(V);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [
"019035"
],
"remark": "",
"space": "4em",
"unrelated": []
},
"023205": {
"id": "023205",
"content": "如图, 已知三棱锥 $P-ABC$ 的侧面 $PAC$ 是底角为 $45^{\\circ}$ 的等腰三角形, $PA=PC$, 且该侧面垂直于底面, $\\angle ACB=90^{\\circ}$, $AB=10$, $BC=6$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.3]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw ({sqrt(136)},0,0) node [right] {$C$} coordinate (C);\n\\draw ({sqrt(34)},{sqrt(34)},0) node [above] {$P$} coordinate (P);\n\\draw ({100/sqrt(136)},0,{60/sqrt(136)}) node [below] {$B$} coordinate (B);\n\\draw (P)--(A)--(B)--(C)--cycle(P)--(B);\n\\draw [dashed] (A)--(C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: 二面角 $A-PB-C$ 是直二面角;\\\\\n(2) 求二面角 $P-AB-C$ 的正切值;",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023206": {
"id": "023206",
"content": "如图, 在直三棱柱 $ABC-A_1B_1C_1$ 中, 底面是等腰直角三角形, $\\angle ACB=90^{\\circ}$ 且 $AC=a$, 侧棱 $AA_1=2$, 点 $D$ 和 $E$ 分别是 $CC_1$ 和 $A_1B_1$ 的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw ({-sqrt(5)},0,0) node [left] {$A$} coordinate (A);\n\\draw ({sqrt(5)},0,0) node [right] {$B$} coordinate (B);\n\\draw (0,0,{-sqrt(5)}) node [below] {$C$} coordinate (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,2,0) node [right] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,2,0) node [above] {$C_1$} coordinate (C_1);\n\\draw ($(A_1)!0.5!(B_1)$) node [above] {$E$} coordinate (E);\n\\draw ($(C)!0.5!(C_1)$) node [right] {$D$} coordinate (D);\n\\draw ($1/3*(A)+1/3*(B)+1/3*(D)$) node [below] {$G$} coordinate (G);\n\\draw (A)--(B)--(B_1)--(A_1)--cycle(A_1)--(C_1)--(B_1)(A)--(E)--(B);\n\\draw [dashed] (C)--(C_1)(A)--(D)--(B)(D)--(E)(E)--(G)(A)--(C)--(B);\n\\filldraw (G) circle (0.03);\n\\end{tikzpicture}\n\\end{center}\n(1) 求直三棱柱 $ABC-A_1B_1C_1$ 的体积 (用字母 $a$ 表示);\\\\\n(2) 若点 $E$ 在平面 $ABD$ 上的射影是三角形 $ABD$ 的重心 $G$,\\\\\n\\textcircled{1} 求直线 $EB$ 与平面 $ABD$ 所成角的余弦值;\\\\\n\\textcircled{2} 求点 $A_1$ 到平面 $ABD$ 的距离.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": { "030001": {
"id": "030001", "id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",