添加三道自拟题目(2026届高一小测用)
This commit is contained in:
parent
73ddb6571f
commit
115642502f
|
|
@ -510104,6 +510104,66 @@
|
|||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"019831": {
|
||||
"id": "019831",
|
||||
"content": "已知$\\alpha,\\beta$是方程$2x^2-\\sqrt{15}x+1=0$的两根, 则$|\\alpha-\\beta|$的值为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20230918\t赵琍琍"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"019832": {
|
||||
"id": "019832",
|
||||
"content": "已知$x,y$是正实数, 则下列条件中, ``$x\\le y$''的必要条件为\\bracket{20}.\n\\fourch{$x+\\dfrac{2}{y}\\le y+\\dfrac{1}{x}$}{$x+\\dfrac{1}{2y}\\le y+\\dfrac{1}{x}$}{$x-\\dfrac{2}{y}\\le y-\\dfrac{1}{x}$}{$x-\\dfrac{1}{2y}\\le y-\\dfrac{1}{x}$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20230918\t赵琍琍"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"019833": {
|
||||
"id": "019833",
|
||||
"content": "已知三角形的三边长分别为$a,b,c$. 设$M=\\dfrac{a}{1+a}+\\dfrac{b}{1+b}$, $N=\\dfrac{c}{1+c}$, $Q=\\dfrac{a+b}{1+a+b}$, 则$M,N,Q$的大小关系为\\bracket{20}.\n\\fourch{$M<N<Q$}{$M<Q<N$}{$N<Q<M$}{$N<M<Q$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20230918\t赵琍琍"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"020001": {
|
||||
"id": "020001",
|
||||
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",
|
||||
|
|
|
|||
Reference in New Issue