diff --git a/工具/latex界面修改题目内容.py b/工具/latex界面修改题目内容.py index 6cc950cb..f977f8cb 100644 --- a/工具/latex界面修改题目内容.py +++ b/工具/latex界面修改题目内容.py @@ -1,6 +1,6 @@ import os,re,json """这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭""" -problems = "14970" +problems = "015051,015303" editor = "王伟叶" def generate_number_set(string,dict): diff --git a/工具/关键字筛选题号.py b/工具/关键字筛选题号.py index 5908a3eb..b5e9c06c 100644 --- a/工具/关键字筛选题号.py +++ b/工具/关键字筛选题号.py @@ -2,7 +2,7 @@ import os,re,json """---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---""" keywords_dict_table = [ - {"origin":["风暴"],"origin2":["40","45","57","67","78","81"]} + {"origin":[r"秋"],"origin2":[r"2021"]} ] """---关键字设置完毕---""" # 示例: keywords_dict_table = [ diff --git a/工具/批量收录题目.py b/工具/批量收录题目.py index 4e5ea261..0569a7ec 100644 --- a/工具/批量收录题目.py +++ b/工具/批量收录题目.py @@ -1,9 +1,9 @@ #修改起始id,出处,文件名 -starting_id = 15352 -raworigin = "高考数学风暴第一轮复习" -filename = r"C:\Users\weiye\Documents\wwy sync\待整理word题目\风暴全.tex" -editor = "20230503\t王伟叶" -indexed = False +starting_id = 17223 +raworigin = "2023届高三下学期月考2" +filename = r"D:\temp\yuekao2.tex" +editor = "20230507\t余利成" +indexed = True IndexDescription = "试题" import os,re,json diff --git a/工具/文本文件/题号筛选.txt b/工具/文本文件/题号筛选.txt index 901e9930..e1adae1e 100644 --- a/工具/文本文件/题号筛选.txt +++ b/工具/文本文件/题号筛选.txt @@ -1 +1 @@ -016281:016301,016390:016410,016657:016677,016877:016897,017115:017135,017181:017201 \ No newline at end of file +003589:003609 \ No newline at end of file diff --git a/工具/讲义生成.py b/工具/讲义生成.py index 41c74df3..1b5301ea 100644 --- a/工具/讲义生成.py +++ b/工具/讲义生成.py @@ -10,7 +10,7 @@ paper_type = 2 # 随后设置一下后续的讲义标题 """---设置题块编号---""" problems = [ -"15164:15175","15176:15179","15180:15184" +"17223:17234","17235:17238","17239:17243" ] """---设置结束---""" @@ -24,7 +24,7 @@ if paper_type == 1: elif paper_type == 2: enumi_mode = 1 #设置模式(1为整卷统一编号, 0为每一部分从1开始编号) template_file = "模板文件/测验周末卷模板.txt" #设置模板文件名 - exec_list = [("标题替换","高三下学期周末卷08")] #设置讲义标题 + exec_list = [("标题替换","高三下学期月考08")] #设置讲义标题 destination_file = "临时文件/"+exec_list[0][1] # 设置输出文件名 elif paper_type == 3: enumi_mode = 0 #设置模式(1为整卷统一编号, 0为每一部分从1开始编号) diff --git a/工具/题号选题pdf生成.py b/工具/题号选题pdf生成.py index 7689714d..348f755a 100644 --- a/工具/题号选题pdf生成.py +++ b/工具/题号选题pdf生成.py @@ -7,7 +7,7 @@ import os,re,time,json,sys """---设置题目列表---""" #留空为编译全题库, a为读取文本文件中的题号筛选.txt文件生成题库 problems = r""" - +a """ """---设置题目列表结束---""" diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index fdf4112f..cb08932b 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -440192,6 +440192,426 @@ "space": "4em", "unrelated": [] }, + "017223": { + "id": "017223", + "content": "集合$A=\\{-1,0,1,2\\}$, $B=\\{x | 00$), 若$E[X]=E[Y]$, 且$P(|Y|<1)=0.4$, 则$P(Y>3)=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题9", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017232": { + "id": "017232", + "content": "已知甲袋中有$3$个白球和$2$个红球, 乙袋中有$2$个白球和$4$个红球. 若先随机取一只袋, 再从该袋中先后随机取$2$个球, 则在第一次取出的球是红球的前提下, 第二次取出的球是白球的概率为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题10", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017233": { + "id": "017233", + "content": "函数$y=(1+\\cos x)^{2023}+(1-\\cos x)^{2023}$, $x \\in[-\\dfrac{2 \\pi}{3}, \\dfrac{2 \\pi}{3}]$的值域为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题11", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017234": { + "id": "017234", + "content": "已知平面向量$\\overrightarrow {a}, \\overrightarrow {b}, \\overrightarrow {c}$满足$|\\overrightarrow {a}|=1$, $\\langle\\overrightarrow {a}, \\overrightarrow {b}\\rangle=\\langle 7 \\overrightarrow {a}-\\overrightarrow {c}, 9 \\overrightarrow {a}-\\overrightarrow {c}\\rangle=\\dfrac{\\pi}{6}$, 则$|\\overrightarrow {b}-\\overrightarrow {c}|$的取值范围是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题12", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017235": { + "id": "017235", + "content": "若$a<0\\dfrac{1}{b}$}{$-a>b$}{$a^2>b^2$}{$a^3a_m$''是``$\\{a_n\\}$是严格递增数列''的\\bracket{20}.\n\\twoch{充分不必要条件}{必要不充分条件}{充要条件}{既不充分也不必要条件}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题15", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017238": { + "id": "017238", + "content": "已知函数$f(x)$是定义在$\\mathbf{R}$上的连续可导函数, 其导函数为$f'(x)$, 且对任意$x \\in \\mathbf{R}$均有$f(x)-f(-x)=2 x$. 若当$x<0$时, $f'(x)>1$恒成立, 且$f(a-2)-f(1-2 a)>3 a-3$, 则实数$a$的取值范围是\\bracket{20}.\n\\fourch{$(-1,1)$}{$(1,+\\infty)$}{$(-\\infty,-1)$}{$(-\\infty,-1) \\cup(1,+\\infty)$}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题16", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "017239": { + "id": "017239", + "content": "直三棱柱$ABC-A_1B_1C_1$中, 底面$ABC$为等腰直角三角形, $AB \\perp AC$, $AB=AC=2$, $AA_1=4, M$是侧棱$CC_1$上一点, 设$MC=h$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (0,0,2) node [left] {$B$} coordinate (B);\n\\draw (A) ++ (0,3,0) node [above] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,3,0) node [left] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,3,0) node [right] {$C_1$} coordinate (C_1);\n\\draw ($(C)!0.3!(C_1)$) node [right] {$M$} coordinate (M);\n\\draw (B)--(C)--(C_1)--(B_1)--cycle (B_1)--(A_1)--(C_1)(B)--(M);\n\\draw [dashed] (B)--(A)--(C)(B)--(A_1)--(C)(A)--(M)(A)--(A_1);\n\\end{tikzpicture}\n\\end{center}\n(1) 若$BM \\perp A_1C$, 求$h$的值;\\\\\n(2) 若$h=2$, 求直线$BA_1$与平面$ABM$所成的角.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题17", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "017240": { + "id": "017240", + "content": "已知$\\triangle ABC$的内角$A, B, C$的对边分别为$a, b, c$.\\\\\n(1) 若$B=\\dfrac{\\pi}{3}$, $b=\\sqrt{5}$, $\\triangle ABC$的面积$S=\\sqrt{3}$, 求$a-c$的值;\\\\\n(2) 若$2 \\cos C(\\overrightarrow{BA} \\cdot \\overrightarrow{BC}+\\overrightarrow{AB} \\cdot \\overrightarrow{AC})=c^2$, 求角$C$的大小.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题18", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "017241": { + "id": "017241", + "content": "疫苗在上市前必须经过严格的检测, 并通过临床实验获得相关数据, 以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在动物小白鼠身上进行科研和临床实验, 得到统计数据如下:\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|}\n\\hline & 未感染病毒 & 感染病毒 & 总计 \\\\\n\\hline 未注射疫苗 & 40 &$p$&$x$\\\\\n\\hline 注射疫苗 & 60 &$q$&$y$\\\\\n\\hline 总计 & 100 & 100 & 200 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n现从未注射疫苗的小白鼠中任取$1$只, 取到``感染病毒''的小白鼠的概率为$\\dfrac{3}{5}$.\\\\\n(1) 求$2 \\times 2$列联表中的数据$p, q, x, y$的值;\\\\\n(2) 是否有$95 \\%$的把握认为注射此种疫苗有效? 说明理由;\\\\\n(3) 在感染病毒的小白鼠中, 按未注射疫苗和注射疫苗的比例抽取$10$只进行病例分析, 然后从这$10$只小白鼠中随机抽取$4$只对注射疫苗情况进行核实, 记$X$为$4$只中未注射疫苗的小白鼠的只数, 求$X$的分布与期望$E[X]$.\\\\\n附: $\\chi^2=\\dfrac{n(a d-b c)^2}{(a+b)(c+d)(a+c)(b+d)}$, 其中$n=a+b+c+d$.\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|}\n\\hline$P(\\chi^2 \\geq k)$& 0.10 & 0.05 & 0.01 & 0.005 & 0.001 \\\\\n\\hline$k$& 2.706 & 3.841 & 6.635 & 7.879 & 10.828 \\\\\n\\hline\n\\end{tabular}\n\\end{center}", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题19", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "017242": { + "id": "017242", + "content": "已知椭圆$C: \\dfrac{x^2}{4}+\\dfrac{y^2}{3}=1$.\\\\\n(1) 求该椭圆的离心率;\\\\\n(2) 设点$P(x_0, y_0)$是椭圆$C$上一点, 求证: 过点$P$的椭圆$C$的切线方程为$\\dfrac{x_0 x}{4}+\\dfrac{y_0 y}{3}=1$;\\\\\n(3) 若点$M$为直线$l: x=4$上的动点, 过点$M$作该椭圆的切线$MA, MB$, 切点分别为$A, B$, 求$\\triangle MAB$的面积的最小值.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届高三下学期月考2试题20", + "edit": [ + "20230507\t余利成" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "017243": { + "id": "017243", + "content": "设函数$f(x)=\\ln (x+1)$, $g(x)=\\dfrac{x}{x+1}$.\\\\\n(1) 记$x_1=g(1)$, $x_{n+1}=g(x_n)$, $n \\in \\mathbf{N}$, $n \\geq 1$. 证明: 数列$\\{\\dfrac{1}{x_n}\\}$为等差数列;\\\\\n(2) 设$m \\in \\mathbf{Z}$. 若对任意$x>0$均有$f(x)>m g(x)-1$成立, 求$m$的最大值;\\\\\n(3) 是否存在正整数$t$使得对任意$n \\in \\mathbf{N}$, $n \\geq t$, 都有$\\displaystyle f(n-t)