From 1406efbbf8ea36149c15debc9cc09daa4db43c11 Mon Sep 17 00:00:00 2001 From: "weiye.wang" Date: Wed, 10 May 2023 20:19:43 +0800 Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=E9=AB=98=E4=B8=89=E4=B8=8B?= =?UTF-8?q?=E5=AD=A6=E6=9C=9F=E6=9C=88=E8=80=832=E5=A1=AB=E9=80=89?= =?UTF-8?q?=E7=AD=94=E6=A1=88?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 工具/文本文件/metadata.txt | 219 ++++++++++--------------------------- 题库0.3/Problems.json | 32 +++--- 2 files changed, 75 insertions(+), 176 deletions(-) diff --git a/工具/文本文件/metadata.txt b/工具/文本文件/metadata.txt index 15723c9a..2a32ab9d 100644 --- a/工具/文本文件/metadata.txt +++ b/工具/文本文件/metadata.txt @@ -1,182 +1,81 @@ ans -014969 -$2\sqrt{2}-3$ +017223 +$\{1\}$ -014970 -$[-1,0]$ -014971 -$11$ -014972 -$\dfrac{\pi}{9}$ +017224 +$1$ -014965 -$(-\infty,8-4\sqrt{2}]$ -040558 -$[0,2-\ln 2]$ -014966 +017225 +$\dfrac{\pi}{3}$ + + + +017226 +$70$ + + + +017227 +$\dfrac{1}{8}$ + + + +017228 +$y=-\dfrac{1}{32}$ + + + +017229 +$\dfrac{2}{3}$ + + + +017230 +$36\pi$ + + + +017231 +$0.1$ + + + +017232 +$\dfrac{17}{32}$ + + + +017233 +$[2,2^{2023}]$ + + + +017234 +$[\dfrac{1}{2},+\infty)$ + + + +017235 D -014968 -(1) 定值为$20$, 证明略; (2) $x=5$且$-5\le y\le 5$ - -014973 -$\dfrac{2\sqrt{6}}3$ -040556 -(1) $[-\dfrac 43,0]$; (2) $50-6\sqrt{41}$; (3) $[2,5+3\sqrt{2}]$ -040560 -$(-\infty,\dfrac 12]$ - -040563 -$(1,5)$ - -040564 -$8$ - -040568 -$\dfrac{29}{13}$ - -014884 -$\{0\}\cup (1,3]$ - -014887 -$(-\infty,-5]$ - -014894 +017236 B -014897 -$(-\infty,-\dfrac 49)$ - -014891 -(1) 证明略; (2) $f(x)=-\dfrac x{2+x}$; (3) $(\dfrac{1}{101},\dfrac{1}{99})$ -014725 -$2$或$\sqrt{6}$ -014924 -$36$ - -014926 -B - -014733 -$(-\infty,-\dfrac{\sqrt{3a}}3]$和$[\dfrac{\sqrt{3a}}3,+\infty)$ - -014882 -(1) 定值为$r$, 证明略; (2) 当$a=1$时, 周期为$1$; 当$a\in (0,1)\cup (1,+\infty)$时, 周期为$2$; (3) $S_n=n$($r=0$时)或$S_n=\dfrac 34n^2+\dfrac 54n$($r=3$时) - -014931 -$36$ - -014736 -$(-\infty,-2]\cup [\dfrac 12,+\infty)$ - -014930 -D - -014922 -$a=0$时, $f(x)$是偶函数; $a=1$时, $f(x)$是奇函数; $a\ne 0$且$a\ne 1$时, $f(x)$既不是奇函数, 又不是偶函数 - -014925 -证明略 - - -014943 -$(\dfrac 32,2)$ - -014909 -(1) $[-1,6]$; (2) $[-13,9]$ - -031397 -$\{\dfrac 12\}$ - -031398 -证明略 - -031399 -(1) 存在, 理由略; (2) 存在, 理由略; (3) 存在, 理由略 - -014944 -$12\pi$ - -031400 -$(-\infty,-6)\cup (6,+\infty)$ - -014989 -\textcircled{2}\textcircled{3} - -031401 -$\sqrt{10}$ - -014910 -(1) (i) $A$与$B$被直线$l$分割; (ii) $A$与$C$不被直线$l$分割; (2) 如$x+y=0$, 理由略; (3) 证明略 - -014987 -$4\pi$ - -014913 -(1) $d(P_1,l_1)=1$, $d(P_2,l_1)=\sqrt{5}$;\\ -(2) $D=\left\{(x,y)|\begin{cases}x\ge 2, \\ (x-2)^2+(y-2)^2=1,\end{cases}\text{ 或 } \begin{cases} x\le =2, \\ (x+2)^2+(y-2)^2=1, \end{cases}\text{ 或 }\begin{cases} -2