E20250407答案

This commit is contained in:
weiye.wang 2024-06-19 22:51:12 +08:00
parent fcef143396
commit 2848dad6b8
1 changed files with 43 additions and 149 deletions

View File

@ -1,171 +1,65 @@
usages
ans
041231
$(1,0)$
004572
20240619 2025届高二10班 0.967
041232
$\dfrac{\pi}{4}$
041233
$(1,-2)$
004573
20240619 2025届高二10班 0.967
041234
$2$
041235
$0.5$
004574
20240619 2025届高二10班 0.933
041236
$\dfrac{16\pi}{3}$
041237
$2$
004575
20240619 2025届高二10班 0.667
041238
$\dfrac{1}{6}$
041239
$0.03$
004576
20240619 2025届高二10班 0.900
041240
$\dfrac{1}{3}$
041241
$10$或$11$
004577
20240619 2025届高二10班 0.917
041242
$\dfrac{4\pi}{3}$
041243
A
004578
20240619 2025届高二10班 0.700
041244
D
041245
C
004572
20240619 2025届高二03班 1.000
041246
D
041247
(1) $a_1=10$, $d=11$; (2) $44$
004573
20240619 2025届高二03班 1.000
041248
(1) $\dfrac{\pi}{3}$; (2) $\dfrac{\sqrt{3}}{3}$
041249
(1) $3$; (2) $30$; (3) $32$
004574
20240619 2025届高二03班 0.976
004575
20240619 2025届高二03班 0.793
004576
20240619 2025届高二03班 0.951
004577
20240619 2025届高二03班 1.000
004578
20240619 2025届高二03班 0.866
004572
20240619 2025届高二04班 0.971
004573
20240619 2025届高二04班 0.971
004574
20240619 2025届高二04班 0.971
004575
20240619 2025届高二04班 0.571
004576
20240619 2025届高二04班 1.000
004577
20240619 2025届高二04班 1.000
004578
20240619 2025届高二04班 0.657
004572
20240619 2025届高二05班 0.951
004573
20240619 2025届高二05班 0.780
004574
20240619 2025届高二05班 0.951
004575
20240619 2025届高二05班 0.585
004576
20240619 2025届高二05班 0.805
004577
20240619 2025届高二05班 1.000
004578
20240619 2025届高二05班 0.927
004572
20240619 2025届高二07班 1.000
004573
20240619 2025届高二07班 0.930
004574
20240619 2025届高二07班 0.860
004575
20240619 2025届高二07班 0.616
004576
20240619 2025届高二07班 0.860
004577
20240619 2025届高二07班 1.000
004578
20240619 2025届高二07班 0.721
004572
20240619 2025届高二09班 0.914
004573
20240619 2025届高二09班 0.971
004574
20240619 2025届高二09班 0.886
004575
20240619 2025届高二09班 0.729
004576
20240619 2025届高二09班 0.914
004577
20240619 2025届高二09班 0.929
004578
20240619 2025届高二09班 0.629
041250
(1) 证明略; (2) $\arccos\dfrac{1}{3}$; (3) 总长为$2a$, 经过四条棱的中点的空间四边形, 理由略
041251
$(\pm\sqrt{3},0)$; (2) 存在, $\lambda=\dfrac{23}{9}$, 定值为$\dfrac{80}{3}$; (3) 如$S$在直线$x=1$上, 证明略