收录一些2026届答案

This commit is contained in:
weiye.wang 2024-03-04 21:31:15 +08:00
parent 8b637c184e
commit 2d83c561db
2 changed files with 143 additions and 32 deletions

View File

@ -1,35 +1,146 @@
remark
ans
040064
20240304不能充分根据题目给出条件来判断三角比的正负; 计算错误
018366
(1) $x=\dfrac{\pi}{3}+2k\pi$或$\dfrac{2\pi}{3}+2k\pi$, $k\in \mathbf{Z}$; (2) $x=\pm \dfrac{3\pi}{4}+2k\pi$, $k\in \mathbf{Z}$; (3) $x=k\pi+\dfrac{\pi}{6}$, $k\in \mathbf{Z}$
018367
(1) $\{\dfrac{\pi}{6},\dfrac{\pi}{3},\dfrac{7\pi}{6},\dfrac{4\pi}{3}\}$; (2) $\{x|x=2k\pi+\dfrac{\pi}{12}\text{或}x=2k\pi-\dfrac{5\pi}{12}, \ k\in \mathbf{Z}\}$; (3) $\{x|x=\dfrac{k\pi}{2}+\dfrac{\pi}{4}, \ k\in \mathbf{Z}\}$
40067
20240304漏解
018369
(1) $x=-\dfrac{\pi}{2}+2k\pi$, $k\in \mathbf{Z}$; (2) $x=\pm \dfrac{\pi}{6}+2k\pi$, $k\in \mathbf{Z}$; (3) $x=\dfrac{\pi}{4}+k\pi$, $k\in \mathbf{Z}$
040069
20240304计算错误
009563
(1) $\{\dfrac{\pi}{2},\dfrac{11\pi}{6}\}$; (2) $\{x|x=k\pi+\dfrac{5\pi}{24}\text{或}k\pi-\dfrac{11\pi}{24}, \ k\in \mathbf{Z}\}$; (3) $\{x|x=\dfrac{k\pi}{3}+\dfrac{\pi}{6}, \ k\in \mathbf{Z}\}$
40071
20240304(1)漏解; 开闭写错; 解题方法不会; (2)解题方法不会; (3)解题方法不会
018372
$\dfrac{\sqrt{6}-\sqrt{2}}{4}$, $\dfrac{\sqrt{6}+\sqrt{2}}{4}$
040072
20240304(2)不能充分根据题目给出条件来判断三角比的正负; 细节; (3)诱导公式变号错误
018373
$-\dfrac{56}{65}$
040074
20240304计算错误; 不能根据题目条件正确舍解(判别式)
018375
$\dfrac{\pi}{3}$
040085
20240304漏解; 给出三角比值, 不能找到正确的角
009564
(1) $\dfrac{\sqrt{2}}{2}$; (2) $\dfrac{\sqrt{3}}{2}$
040086
20240304格式(不该写成集合)
009565
$-\dfrac{7\sqrt{2}}{26}$
040094
20240304两个具体的角比大小判断错误
018377
(1) $\dfrac{\sqrt{3}}{2}$; (2) $\cos 2\alpha$; (3) $-\cos 3x$
020559
20240304(2)未强调对于定义域内任意的$x$; (3)证明过程中未考虑对数函数要求真数部分要大于$0$; 未能正确证明真数部分大于$1$
018376
$-\dfrac{4}{5}$
018378
$\dfrac{\sqrt{6}-\sqrt{2}}{4}$
018379
证明略
018380
(1) $-1$; (2) $\dfrac{1}{7}$
018381
$-\sqrt{3}$
009567
(1) $\dfrac{\sqrt{3}}{2}$; (2) $\sqrt{3}$
009568
$\dfrac{\sqrt{2}}{10}$, $7$
009569
(1) 证明略; (2) 证明略
018385
证明略
018386
$(-\dfrac{\sqrt{2}}{2},\dfrac{3\sqrt{2}}{2})$
018387
(1) $\sin(\alpha+\dfrac{\pi}{3})$; (2) $\sqrt{2}\sin(\alpha-\dfrac{\pi}{4})$; (3) $5\sin(\alpha+\varphi)$, 其中$\cos\varphi=\dfrac{3}{5}$, $\sin\varphi=\dfrac{4}{5}$; (4) $\sqrt{a^2+b^2}\sin(\alpha+\varphi)$, 其中$\cos\varphi=\dfrac{a}{\sqrt{a^2+b^2}}$, $\sin\varphi=\dfrac{b}{\sqrt{a^2+b^2}}$
024614
$\{\alpha|\alpha=2k\pi\text{或}\dfrac{2\pi}{3}+2k\pi, \ k\in \mathbf{Z}\}$
009570
$\sin C=\dfrac{220}{221}$, $\cos C=-\dfrac{21}{221}$
009571
$\sin(\alpha+\beta)=\dfrac{33}{65}$, $\cos(\alpha+\beta)=-\dfrac{56}{65}$, $\alpha+\beta$是第二象限角
009572
(1) $\sqrt{2}\sin(\alpha+\dfrac{\pi}{4})$; (2) $2\sin(\alpha+\dfrac{2\pi}{3})$
018390
$\dfrac{\sqrt{6}-\sqrt{2}}{4}$
018393
$\sin 2\alpha=-\dfrac{24}{25}$, $\cos 2\alpha = -\dfrac{7}{25}$, $\tan 2\alpha = \dfrac{24}{7}$
018395
$\cos 3\theta = 4\cos^3\theta-3\cos \theta$
018396
(1) 证明略; (2) 证明略
009573
(1) $\dfrac{1}{4}$; (2) $\dfrac{\sqrt{2}}{2}$; (3) $\dfrac{\sqrt{3}}{6}$
018394
$\sin 4\alpha=\dfrac{336}{625}$; $\cos 4\alpha = -\dfrac{527}{625}$
009574
$\sin 2\alpha=-\dfrac{4}{5}$, $\cos 2\alpha=-\dfrac{3}{5}$, $\tan 2\alpha=\dfrac{4}{3}$
009575
(1) 证明略; (2) 证明略; (3) 证明略
018398
$\dfrac{7}{25}$
018401
$\cos ^2 \dfrac{\alpha}{2}=\dfrac{1+\cos\alpha}{2}$, $\sin ^2 \dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{2}$, $\tan ^2 \dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{1+\cos\alpha}$
018402
证明略
018403
证明略
018404
证明略
009576
证明略
009577
证明略
009578
证明略
018405
证明略
040387
$\dfrac{5\pi}{3}$
040388
$-1$
040389
$-\dfrac{\pi}{3}$或$\dfrac{4\pi}{3}$
040390
$-3$
040391
$-2$
040392
$-\dfrac{\sqrt{23}}{4}$
000087
20240304对于对称轴落在区间内的情况不能正确讨论求解; 计算

View File

@ -273247,7 +273247,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "(1) $\\dfrac{1}{4}$; (2) $\\dfrac{\\sqrt{2}}{2}$; (3) $\\dfrac{\\sqrt{3}}{6}$",
"solution": "",
"duration": -1,
"usages": [],
@ -273269,7 +273269,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\sin 2\\alpha=-\\dfrac{4}{5}$, $\\cos 2\\alpha=-\\dfrac{3}{5}$, $\\tan 2\\alpha=\\dfrac{4}{3}$",
"solution": "",
"duration": -1,
"usages": [],
@ -273291,7 +273291,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "(1) 证明略; (2) 证明略; (3) 证明略",
"solution": "",
"duration": -1,
"usages": [],
@ -506959,7 +506959,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\sin 2\\alpha=-\\dfrac{24}{25}$, $\\cos 2\\alpha = -\\dfrac{7}{25}$, $\\tan 2\\alpha = \\dfrac{24}{7}$",
"solution": "",
"duration": -1,
"usages": [],
@ -506981,7 +506981,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\sin 4\\alpha=\\dfrac{336}{625}$; $\\cos 4\\alpha = -\\dfrac{527}{625}$",
"solution": "",
"duration": -1,
"usages": [],
@ -507003,7 +507003,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\cos 3\\theta = 4\\cos^3\\theta-3\\cos \\theta$",
"solution": "",
"duration": -1,
"usages": [],
@ -507025,7 +507025,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "(1) 证明略; (2) 证明略",
"solution": "",
"duration": -1,
"usages": [],
@ -507069,7 +507069,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\dfrac{7}{25}$",
"solution": "",
"duration": -1,
"usages": [],
@ -507137,7 +507137,7 @@
"第三单元"
],
"genre": "解答题",
"ans": "",
"ans": "$\\cos ^2 \\dfrac{\\alpha}{2}=\\dfrac{1+\\cos\\alpha}{2}$, $\\sin ^2 \\dfrac{\\alpha}{2}=\\dfrac{1-\\cos\\alpha}{2}$, $\\tan ^2 \\dfrac{\\alpha}{2}=\\dfrac{1-\\cos\\alpha}{1+\\cos\\alpha}$",
"solution": "",
"duration": -1,
"usages": [],