diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 74e4d711..c527dafc 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -368806,6 +368806,405 @@ "remark": "", "space": "12ex" }, + "014996": { + "id": "014996", + "content": "已知集合$A=\\{x | x^2+x-6<0,\\ x \\in \\mathbf{R}\\}$, $B=\\{0,1,2\\}$, 则$A \\cap B=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题1", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "014997": { + "id": "014997", + "content": "若复数$z$满足$z(1-\\mathrm{i})=1+2 \\mathrm{i}$($\\mathrm{i}$是虚数单位), 则复数$z=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题2", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "014998": { + "id": "014998", + "content": "若圆柱的高为$10$, 底面积为$4 \\pi$, 则这个圆柱的侧面积为\\blank{50}.(结果保留$\\pi$)", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题3", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "014999": { + "id": "014999", + "content": "$(x+3)^5$的二项展开式中$x^2$项的系数为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题4", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015000": { + "id": "015000", + "content": "设随机变量$X$服从正态分布$N(0, \\sigma^2)$, 且$P(X>-2)=0.9$, 则$P(X>2)=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题5", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015001": { + "id": "015001", + "content": "双曲线$C: \\dfrac{x^2}{2}-\\dfrac{y^2}{4}=1$的右焦点$F$到其一条渐近线的距离为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题6", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015002": { + "id": "015002", + "content": "投掷一颗骰子, 记事件$A=\\{2,4,5\\}$, $B=\\{1,2,4,6\\}$, 则$P(A | B)=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题7", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015003": { + "id": "015003", + "content": "在$\\triangle ABC$中, 角$A$、$B$、$C$的对边分别记为$a$、$b$、$c$, 若$5 a \\cos A=b \\cos C+c \\cos B$, 则$\\sin 2A=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题8", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015004": { + "id": "015004", + "content": "函数$y=\\log _2 x+\\dfrac{1}{\\log _4(2 x)}$在区间$(\\dfrac{1}{2},+\\infty)$上的最小值为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题9", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015005": { + "id": "015005", + "content": "已知$\\omega \\in \\mathbf{R}$, $\\omega>0$, 函数$y=\\sqrt{3} \\sin \\omega x-\\cos \\omega x$在区间$[0,2]$上有唯一的最小值$-2$, 则$\\omega$的取值范围为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题10", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015006": { + "id": "015006", + "content": "已知边长为$2$的菱形$ABCD$中, $\\angle A=120^{\\circ}$, $P$、$Q$是菱形内切圆上的两个动点, 且$PQ \\perp BD$, 则$\\overrightarrow{AP} \\cdot \\overrightarrow{CQ}$的最大值是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题11", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015007": { + "id": "015007", + "content": "已知$01$''的\\bracket{20}.\n\\twoch{充分不必要条件}{必要不充分条件}{充要条件}{既不充分也不必要条件}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题13", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015009": { + "id": "015009", + "content": "某种产品的广告支出$x$与销售额$y$(单位: 万元) 之间有下表关系, $y$与$x$的线性回归方程为$y=10.5 x+5.4$, 当广告支出$6$万元时, 随机误差的效应即离差(真实值减去预报值)为\\bracket{20}.\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|}\n\\hline$x$& 2 & 4 & 5 & 6 & 8 \\\\\n\\hline$y$& 30 & 40 & 60 & 70 & 80 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\\fourch{$1.6$}{$8.4$}{$11.6$}{$7.4$}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题14", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015010": { + "id": "015010", + "content": "在空间中, 下列命题为真命题的是\\bracket{20}.\n\\onech{若两条直线垂直于第三条直线, 则这两条直线互相平行}{若两个平面分别平行于两条互相垂直的直线, 则这两个平面互相垂直}{若两个平面垂直, 则过一个平面内一点垂直于交线的直线与另外一个平面垂直}{若一条直线平行于一个平面, 另一条直线与这个平面垂直, 则这两条直线互相垂直}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题15", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015011": { + "id": "015011", + "content": "已知函数$y=f(x)$($x \\in \\mathbf{R}$), 其导函数为$y=f'(x)$, 有以下两个命题: \\textcircled{1} 若$y=f'(x)$为偶函数, 则$y=f(x)$为奇函数; \\textcircled{2} 若$y=f'(x)$为周期函数, 则$y=f(x)$也为周期函数. 那么\\bracket{20}.\n\\twoch{\\textcircled{1}是真命题, \\textcircled{2}是假命题}{\\textcircled{1}是假命题, \\textcircled{2}是真命题}{\\textcircled{1}、\\textcircled{2}都是真命题}{\\textcircled{1}、\\textcircled{2}都是假命题}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题16", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "015012": { + "id": "015012", + "content": "已知数列$\\{a_n\\}$是首项为$9$, 公比为$\\dfrac{1}{3}$的等比数列.\\\\\n(1) 求$\\dfrac{1}{a_1}+\\dfrac{1}{a_2}+\\dfrac{1}{a_3}+\\dfrac{1}{a_4}+\\dfrac{1}{a_5}$的值;\\\\\n(2) 设数列$\\{\\log _3 a_n\\}$的前$n$项和为$S_n$, 求$S_n$的最大值, 并指出$S_n$取最大值时$n$的取值.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题17", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "12ex" + }, + "015013": { + "id": "015013", + "content": "如图, 三角形$EAD$与梯形$ABCD$所在的平面互相垂直, $AE \\perp AD$, $AB \\perp AD$, $BC\\parallel AD$, $AB=AE=BC=2$, $AD=4$, $F$、$H$分别为$ED$、$EA$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below] {$A$} coordinate (A);\n\\draw (4,0,0) node [right] {$D$} coordinate (D);\n\\draw (0,2,0) node [above] {$E$} coordinate (E);\n\\draw (0,0,2) node [below] {$B$} coordinate (B);\n\\draw (2,0,2) node [below] {$C$} coordinate (C);\n\\draw ($(E)!0.5!(D)$) node [above] {$F$} coordinate (F);\n\\draw ($(A)!0.5!(E)$) node [right] {$H$} coordinate (H);\n\\draw (B)--(C)--(D)--(E)--cycle(C)--(F)(E)--(C);\n\\draw [dashed] (B)--(H)(E)--(A)--(B)(A)--(C)(A)--(D)(A)--(F);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $BH\\parallel$平面$AFC$;\\\\\n(2) 求平面$ACF$与平面$EAB$所成锐二面角的余弦值.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题18", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "12ex" + }, + "015014": { + "id": "015014", + "content": "为了庆祝党的二十大顺利召开, 某学校特举办主题为``重温光辉历史展现坚定信心''的百科知识小测试比赛. 比赛分抢答和必答两个环节, 两个环节均设置$10$道题, 其中$5$道人文历史题和$5$道地理环境题.\\\\\n(1) 在抢答环节, 某代表队非常积极, 抢到$4$次答题机会, 求该代表队至少抢到$1$道地理环境题的概率;\\\\\n(2) 在必答环节, 每个班级从$5$道人文历史题和$5$道地理环境题各选$2$题, 各题答对与否相互独立, 每个代表队可以先选择人文历史题, 也可以先选择地理环境题开始答题. 若中间有一题答错就退出必答环节, 仅当第一类问题中$2$题均答对, 才有资格开始第二类问题答题. 已知答对$1$道人文历史题得$2$分, 答对$1$道地理环境题得$3$分. 假设某代表队答对人文历史题的概率都是$\\dfrac{3}{5}$, 答对地理环境题的概率都是$\\dfrac{1}{3}$. 请你为该代表队作出答题顺序的选择, 使其得分期望值更大, 并说明理由.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届浦东新区高三二模试题19", + "edit": [ + "202304012\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "12ex" + }, + "015015": { + "id": "015015", + "content": "椭圆$C$的方程为$x^2+3 y^2=4$, $A$、$B$为椭圆的左右顶点, $F_1$、$F_2$为左右焦点, $P$为椭圆上的动点.\\\\\n(1) 求椭圆的离心率;\\\\\n(2) 若$\\triangle PF_1F_2$为直角三角形, 求$\\triangle PF_1F_2$的面积;\\\\\n(3) 若$Q$、$R$为椭圆上异于$P$的点, 直线$PQ$、$PR$均与圆$x^2+y^2=r^2$($0