录入26届寒假作业8并建立related

This commit is contained in:
wangweiye7840 2024-01-08 12:00:26 +08:00
parent fb1156ba06
commit 368ff08354
1 changed files with 357 additions and 4 deletions

View File

@ -20206,7 +20206,9 @@
"20220624\t朱敏慧, 王伟叶" "20220624\t朱敏慧, 王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"023505"
],
"remark": "", "remark": "",
"space": "", "space": "",
"unrelated": [] "unrelated": []
@ -542469,7 +542471,9 @@
"20221230\t王伟叶" "20221230\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"023506"
],
"remark": "", "remark": "",
"space": "", "space": "",
"unrelated": [] "unrelated": []
@ -550670,7 +550674,8 @@
], ],
"same": [], "same": [],
"related": [ "related": [
"023286" "023286",
"023504"
], ],
"remark": "", "remark": "",
"space": "", "space": "",
@ -604370,7 +604375,8 @@
], ],
"same": [], "same": [],
"related": [ "related": [
"023286" "023286",
"023504"
], ],
"remark": "", "remark": "",
"space": "", "space": "",
@ -627844,6 +627850,353 @@
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
}, },
"023501": {
"id": "023501",
"content": "设函数 $f(x)=(\\sqrt{x+1}+\\sqrt{x})(\\sqrt{x+1}-\\sqrt{x})$, 则函数 $y=f(x)$ 的定义域为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023502": {
"id": "023502",
"content": "已知函数 $f(x)$ 满足 $f(\\sqrt{x})=x$, 则 $f(4)=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023503": {
"id": "023503",
"content": "将函数 $f(x)=x^3$ 的图像向右平移 2 个单位后, 得到函数 $g(x)$ 的图像, 则 $g(2)=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023504": {
"id": "023504",
"content": "已知数列 $\\{a_n\\}$ 的前 $n$ 项和为 $S_n=n^2+2 n+3$, 则数列 $\\{a_n\\}$ 的通项公式 $a_n=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [
"022541",
"020711"
],
"remark": "",
"space": "",
"unrelated": []
},
"023505": {
"id": "023505",
"content": "设函数 $f(x)=\\log _2(3 x-1)$ 的反函数为 $f^{-1}(x)$. 若 $f^{-1}(a)=3$, 则 $a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [
"000549"
],
"remark": "",
"space": "",
"unrelated": []
},
"023506": {
"id": "023506",
"content": "已知实常数 $a>0$, 函数 $f(x)=-\\dfrac{2^x-1}{2^x+a}$ 为奇函数, 则 $a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [
"020424"
],
"remark": "",
"space": "",
"unrelated": []
},
"023507": {
"id": "023507",
"content": "已知常数 $a \\in \\mathbf{R}$, 函数 $f(x)=x^2-4 x+a$ 在 [1,4] 上有两个不同的零点, 则 $a$ 的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023508": {
"id": "023508",
"content": "设 $x, y, z>0$, 满足 $2^x=3^y=6^z$, 则 $2 x+\\dfrac{1}{z}-\\dfrac{1}{y}$ 的最小值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023509": {
"id": "023509",
"content": "已知实常数 $a>0$, 函数 $f(x)=\\log _2(x^2+a)$, $g(x)=f[f(x)]$. 若 $f(x)$ 与 $g(x)$ 有相同的值域, 则 $a$ 的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023510": {
"id": "023510",
"content": "已知常数 $a \\in \\mathbf{R}$. 设函数 $f(x)=3 x^3+(2 a-1) x+a \\sqrt{2-2 x^2}$, 定义域为 $(0, \\dfrac{\\sqrt{3}}{3})$. 若 $f(x)$的最小值为 0, 则 $a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023511": {
"id": "023511",
"content": "如图为幂函数 $y=x^{\\alpha}$ 的图像, 则实数 $\\alpha$ 的值可以为\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-3,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-0.5) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = {1/sqrt(27)}:3, samples = 100] plot (\\x,{exp(-2/3*ln(\\x))}) plot (-\\x,{exp(-2/3*ln(\\x))});\n\\end{tikzpicture}\n\\end{center}\n\\fourch{$\\dfrac{2}{3}$}{$\\dfrac{3}{2}$}{$-\\dfrac{2}{3}$}{$-\\dfrac{3}{2}$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023512": {
"id": "023512",
"content": "设 $\\{a_n\\}$ 是等比数列, 则``$a_1<a_2<a_3$''是``数列 $\\{a_n\\}$ 是严格增数列''的 $\\bracket{20}$\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分又非必要条件}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023513": {
"id": "023513",
"content": "若函数 $f(x)$ 的图像上存在关于直线 $y=x$ 对称的不同两点, 则称 $f(x)$ 具有性质 $P$. 知 $a, b$ 为常数, 函数 $g(x)=2 x+\\dfrac{a}{x}$, $h(x)=\\dfrac{b x}{x^2+1}$. 对于命题: \\textcircled{1} 存在 $a>0$, 使得 $g(x)$具有性质 $P$; \\textcircled{2} 存在 $b>0$, 使得 $h(x)$ 具有性质 $P$, 下列判断正确的是\\bracket{20}.\n\\twoch{\\textcircled{1}和 \\textcircled{2}均为真命题}{\\textcircled{1}和\\textcircled{2}均为假命题}{\\textcircled{1} 为真命题, \\textcircled{2} 为假命题}{\\textcircled{1} 为假命题, \\textcircled{2} 为真命题}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023514": {
"id": "023514",
"content": "已知常数 $a \\in \\mathbf{R}$, 函数 $f(x)=|2 x-1|+a$.\\\\\n(1) 若 $a=-3$, 解不等式 $f(x) \\leq 0$;\\\\\n(2) 若关于 $x$ 的不等式 $f(x) \\geq 1$ 对任意 $x \\in \\mathbf{R}$ 恒成立, 求 $a$ 的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023515": {
"id": "023515",
"content": "已知函数 $f(x)$ 的定义域为 $\\mathbf{R}$, 当 $x \\geq 0$ 时, $f(x)=2 x-\\dfrac{2}{x+1}$.\\\\\n(1) 求函数 $g(x)=f(x)-x$($x \\geq 0$) 的零点;\\\\\n(2) 若 $f(x)$ 为偶函数. 当 $x<0$ 时, 解不等式 $f(x)<-4 x-3$.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023516": {
"id": "023516",
"content": "已知数列 $\\{a_n\\}$ 是等差数列, 满足 $a_1=-3$, $a_3=1$, 数列 $\\{b_n\\}$ 满足 $a_n(b_n-1)=1$\\\\\n(1) 求数列 $\\{a_n\\}$ 的通项公式;\\\\\n(2) 求数列 $\\{b_n\\}$ 的通项公式, 并求出其最大项与最小项;\\\\\n(3) 记 $c_n=\\dfrac{(-1)^{n+1}}{a_na_{n+2}}$, 求 $c_1+c_2+\\cdots+c_n$.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023517": {
"id": "023517",
"content": "已知函数 $f(x), g(x)$ 的定义域分别为 $D_1, D_2$. 若存在常数 $C>0$, 满足:\\\\\n\\textcircled{1} 对任意 $x_0\\in D_1$, 恒有 $x_0+C \\in D_1$, 且 $f(x_0) \\leq f(x_0+C)$;\\\\\n\\textcircled{2} 对任意 $x_0\\in D_1$, 关于 $x$ 的不等式组 $f(x_0) \\leq g(x) \\leq g(x+C) \\leq f(x_0+C)$ 恒有解,则称 $g(x)$ 为 $f(x)$ 的一个``$C$ 型函数''.\\\\\n(1) 设函数 $f(x)=\\begin{cases}-1,&0 \\leq x \\leq \\dfrac{1}{3},\\\\1,& x>\\dfrac{1}{3}\\end{cases}$ 和 $g(x)=\\begin{cases}1,&0 \\leq x \\leq \\dfrac{1}{2},\\\\0,& x>\\dfrac{1}{2}.\\end{cases}$ 求证: $g(x)$ 为 $f(x)$ 的一个``$\\dfrac{1}{2}$型函数'';\\\\\n(2) 设常数 $a \\in \\mathbf{R}$, 函数 $f(x)=x^3+a x(x \\geq-1)$, $g(x)=2 x$($x \\geq-1$). 若 $g(x)$ 为 $f(x)$ 的一个``1 型函数'', 求 $a$ 的取值范围;\\\\\n(3) 设函数 $f(x)=x^2-4 x$($x \\geq 0$). 问: 是否存在常数 $t>0$, 使得函数 $g(x)=x+\\dfrac{2 t^2}{x}$($x>0$) 为 $f(x)$ 的一个``$t$ 型函数''? 若存在, 求 $t$ 的取值范围; 若不存在, 说明理由.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": { "030001": {
"id": "030001", "id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",