赋能19使用数据导入

This commit is contained in:
weiye.wang 2023-05-13 19:53:04 +08:00
parent 8a3d39d855
commit 36b35c5a28
3 changed files with 322 additions and 92 deletions

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@ -14,7 +14,7 @@
"filepath = \"数据导入作业文件\"\n",
"\n",
"# date = str(time.localtime().tm_year)+str(time.localtime().tm_mon).zfill(2)+str(time.localtime().tm_mday).zfill(2)\n",
"date = \"20230508\"\n",
"date = \"20230421\"\n",
"\n",
"#生成文件名tex_file和zip_file\n",
"files = [os.path.join(filepath,f) for f in os.listdir(filepath)]\n",
@ -108,7 +108,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15"
"version": "3.9.15"
},
"orig_nbformat": 4,
"vscode": {

View File

@ -1,94 +1,242 @@
solution
017239
(1) 由底面$ABC$为等腰直角三角形且 $AB \perp AC$知$AB\perp$平面$ACC_1A_1$, \\
从而$BM$在平面$ACC_1A_1$上的投影为$AM$,
故由$BM \perp A_1C$ 知 $AM\perp A_1C $, \\
结合$AC=2$, $AA_1=4$ 得 $MC=1$, 即$h=1$.\\
(2) 如图建系:以$A$为原点,分别以$\overrightarrow{AB}$、$\overrightarrow{AC}$、$\overrightarrow{AA_1}$方向为$x$轴、 $y$轴、$z$ 轴正方向建立平面直角坐标系.\\
$A(0,0,0),B(2,0,0),C(0,2,0),A_1(0,0,4),M(0,2,2)$,
$\overrightarrow{BA_1}=(-2,0,4),\overrightarrow{AB}=(2,0,0),\overrightarrow{AM}=(0,2,2),$\\
设平面$ABM$的一个法向量为$\overrightarrow{n}=(x,y,z)$, 则$\begin{cases}
2x=0,\\
2y+2z=0.
\end{cases}$ 取$\overrightarrow{n}=(0,1,-1),$设直线$BA_1$与平面$ABM$所成的角为$\theta$, 则$\sin\theta=|\cos \langle\overrightarrow{BA_1},\overrightarrow{n}\rangle|=\dfrac{|\overrightarrow{BA_1}\cdot\overrightarrow{n}|}{|\overrightarrow{BA_1}|\cdot|\overrightarrow{n}|}=\dfrac{\sqrt{10}}{5}$, 故直线$BA_1$与平面$ABM$所成的角为$\arcsin\dfrac{\sqrt{10}}{5}$.
usages
011263
20230421 2023届高三10班 1.000
011266
20230421 2023届高三10班 0.914
017240
(1) 由 $S=\dfrac{1}{2}ac\sin B=\dfrac{\sqrt{3}}{4}ac=\sqrt{3}$知$ac=4$\\
由$a^2+c^2-b^2=2ac\cos B$知$a^2+c^2=9$.\\
结合两式得$(a-c)^2=1$, 故$a-c=\pm 1$\\
(2) 由$2\cos C (ac\cos B+cb\cos A)=c^2$知$2a\cos B\cos C+2b \cos A\cos C=c$,\\
又由正弦定理知 $2\cos C(\sin A\cos B+\sin B\cos A)=\sin C$\\
$2\cos C \sin (A+B)=2\cos C \sin C=\sin C$,其中$C\in (0,\pi), \sin C>0$,\\
故$\cos C=\dfrac{1}{2}$, $C\in(0,\pi)$, $C=\dfrac{\pi}{3}$.
000518
20230421 2023届高三10班 0.857
000519
20230421 2023届高三10班 0.914
000520
20230421 2023届高三10班 1.000
017241
(1) $\dfrac{p}{p+40}=\dfrac{3}{5}$得$p=60$, $q=40$, $x=100$, $y=100$.\\
(2) 原假设$H_0:$ 是否注射此种疫苗与是否感染病毒无关.\\
$\chi^2=\dfrac{200\times (40\times 40-60\times 60)^2}{100\times 100\times 100\times 100}=8>3.841$\\
故拒绝原假设,即有$95 \%$的把握认为注射此种疫苗有效.\\
(3) 抽取$6$只未注射疫苗、$4$只注射疫苗的小白鼠.\\
$P(X=0)=\dfrac{C_6^0C_4^4}{C_{10}^4}=\dfrac{1}{210}$;\\
$P(X=1)=\dfrac{C_6^1C_4^3}{C_{10}^4}=\dfrac{4}{35}$;\\
$P(X=2)=\dfrac{C_6^2C_4^2}{C_{10}^4}=\dfrac{3}{7}$;\\
$P(X=3)=\dfrac{C_6^3C_4^1}{C_{10}^4}=\dfrac{8}{21}$;\\
$P(X=4)=\dfrac{C_6^4C_4^0}{C_{10}^4}=\dfrac{1}{14}$.\\
故$X$的分布为$\begin{pmatrix}
0&1&2&3&4\\
\dfrac{1}{210}&\dfrac{4}{35}&\dfrac{3}{7}&\dfrac{8}{21}&\dfrac{1}{14}
\end{pmatrix},$\\
期望$E[X]=0\times \dfrac{1}{210}+1\times \dfrac{4}{35}+2\times \dfrac{3}{7}+3\times \dfrac{8}{21}+4\times \dfrac{1}{14}=\dfrac{12}{5}$.
000521
20230421 2023届高三10班 1.000
000522
20230421 2023届高三10班 0.771
000523
20230421 2023届高三10班 0.943
017242
(1) 椭圆的离心率$e=\dfrac{1}{2}$;\\
(2) 证明: 当$x_0=2$时,$y_0=0,$ 过点$P$的椭圆$C$的切线方程为 $x=2$,符合$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$\\
同理,当$x_0=-2$时,也符合;\\
当$x_0\neq\pm 2$时,设过点$P$的椭圆$C$的切线方程为$y-y_0=k(x-x_0)$($k$存在),\\
联立$\begin{cases}
y-y_0=k(x-x_0),\\
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
\end{cases}$得$(3+4k^2)x^2+8k(y-kx_0)x+4(y_0-kx_0)^2-12=0$,\\
$\Delta=0$得$(x_0^2-4)k^2-2x_0y_0k+y_0^2-3=0$,解得$k=\dfrac{x_0y_0}{x_0^2-4}=\dfrac{x_0y_0}{4(1-\dfrac{y_0^2}{3})-4}=-\dfrac{3x_0}{4y_0}.$\\
故$y-y_0=-\dfrac{3x_0}{4y_0}(x-x_0)$,即$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
综上,过点$P$的椭圆$C$的切线方程为$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
(3) 设$A(x_1,y_1).B(x_2,y_2),x_1\neq x_2,M(4,t)$.\\
则切线$MA:\dfrac{x_1x}{4}+\dfrac{y_1y}{3}=1,$代入$(4,t)$得$x_1+\dfrac{ty_1}{3}=1$,\\
同理,$x_1+\dfrac{ty_1}{3}=1$\\
故$A(x_1,y_1),B(x_2,y_2)$在直线$x+\dfrac{ty}{3}=1$上,故直线$AB:x=-\dfrac{ty}{3}+1$.\\
联立$\begin{cases}
x=-\dfrac{ty}{3}+1,\\
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
\end{cases}$
$(4+\dfrac{t^2}{3})y^2-2ty-9=0$, $\Delta=16t^2+144>0$,\\
$|AB|=\sqrt{1+\dfrac{t^2}{9}}\cdot |y_1-y_2|=\sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}$,\\
$M$到直线$AB$的距离$d=\dfrac{|4+\dfrac{t^2}{3}-1|}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}$,\\
$\triangle MAB$的面积$S=\dfrac{1}{2}|AB|\cdot d=\dfrac{1}{2}\cdot \sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}\cdot \dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{2(t^2+9)\sqrt{t^2+9}}{t^2+12}$,\\
令$\lambda=\sqrt{t^2+9}\geq3, S=f(\lambda)=\dfrac{2\lambda^3}{\lambda^2+3},$
则$f^{'} (\lambda)=\dfrac{2\lambda^4+18\lambda^2}{(\lambda^2+3)^2}>0$,故$f(\lambda)$在$[3,+\infty)$严格增,$f(\lambda)_{\min}=f(3)=\dfrac{9}{2}$,故$\triangle MAB$的面积的最小值为$\dfrac{9}{2},$ 此时$M$的坐标为$(4,0)$.
000524
20230421 2023届高三10班 0.943
000525
20230421 2023届高三10班 0.800
011263
20230421 2023届高三11班 0.864
017243
(1) $x_1=\dfrac{1}{2},x_{n+1}=g(x_n)=\dfrac{x_n}{x_{n+1}},$故$x_n>0,\dfrac{1}{x_{n+1}}=\dfrac{x_n+1}{x_n}=\dfrac{1}{x_n}+1$,即$\dfrac{1}{x_{n+1}}-\dfrac{1}{x_{n}}=1$,\\因此数列$\{\dfrac{1}{x_n}\}$是以$2$为首项,$1$为公差的等差数列.\\
(2) 对任意$x>0$ 均有$f(x)-mg(x)=\ln (x+1)-\dfrac{mx}{x+1}+1>0,$\\
令$h(x)=\ln (x+1)-\dfrac{mx}{x+1}+1,x>0,$则$h^{'}(x)=\dfrac{x+1-m}{(x+1)^2}$.\\
当$m\geq4$时,$h(1)=\ln 2-\dfrac{m}{2}+1<2-\dfrac{m}{2}<0,$这与$h(x)>0$对$x>0$恒成立矛盾;\\
当$m=3$时,$h(x)=\ln (x+1)-\dfrac{3x}{x+1}+1,h^{'}(x)\dfrac{x-2}{(x+1)^2}.h(x)$在$(0,2]$严格减,在$[2,+\infty)$严格增,故$h(x)_{\min}=h(2)=\ln 3-2+1=\ln 3-1>0$,符合题意.\\
综上,整数$m$的最大值为$3$.\\
(3) 对任意正整数$t$,取$n=100t,$则 \\$\displaystyle f(n-t)=f(99t)=\ln (1+99t)=\ln \dfrac{1+99t}{99t}+\ln \dfrac{99t}{99t-1}+\cdots +\ln \dfrac{2}{1}=\sum_{k=1}^{99t}\ln (1+\dfrac{1}{k}).$\\
$\displaystyle n-\sum_{k=1}^{100t}g(k)=\sum_{k=1}^{100t}(1- g(k))=\sum_{k=1}^{100t} \dfrac{1}{1+k}=\sum_{k=1}^{99t} \dfrac{1}{1+k}+\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
令$H(x)=\ln (x+1)-\dfrac{x}{x+1},x>0$,则$H^{'}(x)=\dfrac{x}{(x+1)^2}>0$恒成立,故$H(x)$在$(0,+\infty)$严格增,$H(x)>H(0)=0$,故$\ln (1+x)>\dfrac{x}{x+1}$对$x>0$恒成立.\\
因此$\ln (1+\dfrac{1}{k})>\dfrac{\dfrac{1}{k}}{1+\dfrac{1}{k}}=\dfrac{1}{1+k}$,\\
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}$\\
$\displaystyle>\sum_{k=2}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})+(\ln 2-\dfrac{1}{2})- \dfrac{t}{1+99t+1}>\ln 2-\dfrac{1}{2}-\dfrac{1}{99+\dfrac{2}{t}}>0.1-\dfrac{1}{99}>0.$\\
因此不存在正整数$t$使得对任意$n \in \mathbf{N}$, $n \geq t$, 都有$\displaystyle f(n-t)<n-\sum_{k=1}^n g(k)$成立.
011266
20230421 2023届高三11班 0.909
000518
20230421 2023届高三11班 0.773
000519
20230421 2023届高三11班 1.000
000520
20230421 2023届高三11班 0.864
000521
20230421 2023届高三11班 0.864
000522
20230421 2023届高三11班 0.591
000523
20230421 2023届高三11班 0.727
000524
20230421 2023届高三11班 1.000
000525
20230421 2023届高三11班 0.636
011263
20230421 2023届高三12班 0.739
011266
20230421 2023届高三12班 0.696
000518
20230421 2023届高三12班 0.739
000519
20230421 2023届高三12班 1.000
000520
20230421 2023届高三12班 0.826
000521
20230421 2023届高三12班 0.913
000522
20230421 2023届高三12班 0.696
000523
20230421 2023届高三12班 0.783
000524
20230421 2023届高三12班 0.870
000525
20230421 2023届高三12班 0.652
011263
20230421 2023届高三02班 0.969
011266
20230421 2023届高三02班 0.875
000518
20230421 2023届高三02班 0.656
000519
20230421 2023届高三02班 1.000
000520
20230421 2023届高三02班 1.000
000521
20230421 2023届高三02班 0.875
000522
20230421 2023届高三02班 0.625
000523
20230421 2023届高三02班 0.844
000524
20230421 2023届高三02班 1.000
000525
20230421 2023届高三02班 0.750
011263
20230421 2023届高三04班 0.893
011266
20230421 2023届高三04班 1.000
000518
20230421 2023届高三04班 1.000
000519
20230421 2023届高三04班 0.929
000520
20230421 2023届高三04班 0.929
000521
20230421 2023届高三04班 0.893
000522
20230421 2023届高三04班 0.821
000523
20230421 2023届高三04班 0.964
000524
20230421 2023届高三04班 0.929
000525
20230421 2023届高三04班 0.857
011263
20230421 2023届高三05班 0.973
011266
20230421 2023届高三05班 1.000
000518
20230421 2023届高三05班 1.000
000519
20230421 2023届高三05班 0.973
000520
20230421 2023届高三05班 1.000
000521
20230421 2023届高三05班 1.000
000522
20230421 2023届高三05班 1.000
000523
20230421 2023届高三05班 0.973
000524
20230421 2023届高三05班 0.973
000525
20230421 2023届高三05班 1.000
011263
20230421 2023届高三07班 0.758
011266
20230421 2023届高三07班 0.879
000518
20230421 2023届高三07班 0.697
000519
20230421 2023届高三07班 1.000
000520
20230421 2023届高三07班 0.970
000521
20230421 2023届高三07班 0.818
000522
20230421 2023届高三07班 0.758
000523
20230421 2023届高三07班 0.818
000524
20230421 2023届高三07班 0.788
000525
20230421 2023届高三07班 0.727
011263
20230421 2023届高三08班 0.852
011266
20230421 2023届高三08班 0.889
000518
20230421 2023届高三08班 0.741
000519
20230421 2023届高三08班 1.000
000520
20230421 2023届高三08班 1.000
000521
20230421 2023届高三08班 0.852
000522
20230421 2023届高三08班 0.778
000523
20230421 2023届高三08班 0.889
000524
20230421 2023届高三08班 0.963
000525
20230421 2023届高三08班 0.667

View File

@ -16592,7 +16592,15 @@
"solution": "",
"duration": -1,
"usages": [
"20220303\t2022届高三01班\t0.977"
"20220303\t2022届高三01班\t0.977",
"20230421\t2023届高三10班\t0.857",
"20230421\t2023届高三11班\t0.773",
"20230421\t2023届高三12班\t0.739",
"20230421\t2023届高三02班\t0.656",
"20230421\t2023届高三04班\t1.000",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.697",
"20230421\t2023届高三08班\t0.741"
],
"origin": "赋能练习",
"edit": [
@ -16618,7 +16626,15 @@
"duration": -1,
"usages": [
"20211026\t2022届高三01班\t1.000",
"20220303\t2022届高三01班\t1.000"
"20220303\t2022届高三01班\t1.000",
"20230421\t2023届高三10班\t0.914",
"20230421\t2023届高三11班\t1.000",
"20230421\t2023届高三12班\t1.000",
"20230421\t2023届高三02班\t1.000",
"20230421\t2023届高三04班\t0.929",
"20230421\t2023届高三05班\t0.973",
"20230421\t2023届高三07班\t1.000",
"20230421\t2023届高三08班\t1.000"
],
"origin": "赋能练习",
"edit": [
@ -16648,7 +16664,15 @@
"duration": -1,
"usages": [
"20211026\t2022届高三01班\t0.977",
"20220303\t2022届高三01班\t0.977"
"20220303\t2022届高三01班\t0.977",
"20230421\t2023届高三10班\t1.000",
"20230421\t2023届高三11班\t0.864",
"20230421\t2023届高三12班\t0.826",
"20230421\t2023届高三02班\t1.000",
"20230421\t2023届高三04班\t0.929",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.970",
"20230421\t2023届高三08班\t1.000"
],
"origin": "赋能练习",
"edit": [
@ -16678,7 +16702,15 @@
"duration": -1,
"usages": [
"20211026\t2022届高三01班\t0.953",
"20220303\t2022届高三01班\t0.930"
"20220303\t2022届高三01班\t0.930",
"20230421\t2023届高三10班\t1.000",
"20230421\t2023届高三11班\t0.864",
"20230421\t2023届高三12班\t0.913",
"20230421\t2023届高三02班\t0.875",
"20230421\t2023届高三04班\t0.893",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.818",
"20230421\t2023届高三08班\t0.852"
],
"origin": "赋能练习",
"edit": [
@ -16707,7 +16739,15 @@
"solution": "",
"duration": -1,
"usages": [
"20220303\t2022届高三01班\t0.953"
"20220303\t2022届高三01班\t0.953",
"20230421\t2023届高三10班\t0.771",
"20230421\t2023届高三11班\t0.591",
"20230421\t2023届高三12班\t0.696",
"20230421\t2023届高三02班\t0.625",
"20230421\t2023届高三04班\t0.821",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.758",
"20230421\t2023届高三08班\t0.778"
],
"origin": "赋能练习",
"edit": [
@ -16731,7 +16771,15 @@
"solution": "",
"duration": -1,
"usages": [
"20220303\t2022届高三01班\t0.907"
"20220303\t2022届高三01班\t0.907",
"20230421\t2023届高三10班\t0.943",
"20230421\t2023届高三11班\t0.727",
"20230421\t2023届高三12班\t0.783",
"20230421\t2023届高三02班\t0.844",
"20230421\t2023届高三04班\t0.964",
"20230421\t2023届高三05班\t0.973",
"20230421\t2023届高三07班\t0.818",
"20230421\t2023届高三08班\t0.889"
],
"origin": "赋能练习",
"edit": [
@ -16755,7 +16803,15 @@
"solution": "",
"duration": -1,
"usages": [
"20220303\t2022届高三01班\t0.884"
"20220303\t2022届高三01班\t0.884",
"20230421\t2023届高三10班\t0.943",
"20230421\t2023届高三11班\t1.000",
"20230421\t2023届高三12班\t0.870",
"20230421\t2023届高三02班\t1.000",
"20230421\t2023届高三04班\t0.929",
"20230421\t2023届高三05班\t0.973",
"20230421\t2023届高三07班\t0.788",
"20230421\t2023届高三08班\t0.963"
],
"origin": "赋能练习",
"edit": [
@ -16781,7 +16837,15 @@
"solution": "",
"duration": -1,
"usages": [
"20220303\t2022届高三01班\t0.837"
"20220303\t2022届高三01班\t0.837",
"20230421\t2023届高三10班\t0.800",
"20230421\t2023届高三11班\t0.636",
"20230421\t2023届高三12班\t0.652",
"20230421\t2023届高三02班\t0.750",
"20230421\t2023届高三04班\t0.857",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.727",
"20230421\t2023届高三08班\t0.667"
],
"origin": "赋能练习",
"edit": [
@ -297187,7 +297251,16 @@
"ans": "$[1,4]$",
"solution": "",
"duration": -1,
"usages": [],
"usages": [
"20230421\t2023届高三10班\t1.000",
"20230421\t2023届高三11班\t0.864",
"20230421\t2023届高三12班\t0.739",
"20230421\t2023届高三02班\t0.969",
"20230421\t2023届高三04班\t0.893",
"20230421\t2023届高三05班\t0.973",
"20230421\t2023届高三07班\t0.758",
"20230421\t2023届高三08班\t0.852"
],
"origin": "2022届高三下学期周末卷2试题1",
"edit": [
"20220818\t王伟叶"
@ -297275,7 +297348,16 @@
"ans": "$3$",
"solution": "",
"duration": -1,
"usages": [],
"usages": [
"20230421\t2023届高三10班\t0.914",
"20230421\t2023届高三11班\t0.909",
"20230421\t2023届高三12班\t0.696",
"20230421\t2023届高三02班\t0.875",
"20230421\t2023届高三04班\t1.000",
"20230421\t2023届高三05班\t1.000",
"20230421\t2023届高三07班\t0.879",
"20230421\t2023届高三08班\t0.889"
],
"origin": "2022届高三下学期周末卷2试题4",
"edit": [
"20220818\t王伟叶"