diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 0fb88944..bd31fb5c 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -55629,7 +55629,9 @@ "20220625\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023219" + ], "remark": "", "space": "", "unrelated": [] @@ -621523,6 +621525,348 @@ "space": "4em", "unrelated": [] }, + "023207": { + "id": "023207", + "content": "长方体交于一点的三个面的面积是 $6$、$12$、$8$, 则它的对角线长是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023208": { + "id": "023208", + "content": "正方体 $ABCD-A_1B_1C_1D_1$ 中, $BC_1$ 与平面 $AB_1C$ 所成角的正弦值为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023209": { + "id": "023209", + "content": "在棱长为 $2$ 的正方体 $ABCD-A_1B_1C_1D_1$ 中, $E$ 是 $BC_1$ 的中点. 则直线 $DE$ 与平面 $ABCD$ 所成角的大小为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023210": { + "id": "023210", + "content": "四面体 $ABCL$ 的各棱长都相等, $M, N$ 分别为 $BC, AD$ 的中点, 则异面直线 $AM$ 与 $CN$ 所成角的大小为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023211": { + "id": "023211", + "content": "长方体的一条对角线与过同一顶点的三个面中的两个面所成角为 $\\mathbf{30 ^{\\circ}}$ 和 $\\mathbf{45 ^{\\circ}}$, 则这条对角线与第三个面所成角的大小是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023212": { + "id": "023212", + "content": "若斜三棱柱的侧棱长是 15 , 侧棱与底面的夹角为 $60^{\\circ}$, 则此棱柱的高是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023213": { + "id": "023213", + "content": "圆柱的侧面展开图是边长为 $2 \\pi$ 和 $3 \\pi$ 的矩形, 则圆柱的体积为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023214": { + "id": "023214", + "content": "圆锥的侧面展开图是半径为 $a$ 的半圆, 这个圆锥的高为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023215": { + "id": "023215", + "content": "若圆锥的全面积是底面积的三倍, 则它的侧面展开图的圆心角是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023216": { + "id": "023216", + "content": "圆锥的轴截面是一个直角三角形, 那么它的侧面积与底面积之比为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023217": { + "id": "023217", + "content": "过棱锥高的两个三等分点作平行于底面的截面, 设两个截面面积及底面面积分别为 $S_1, S_2, S_3$($S_1=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C_1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D_1);\n\\draw (A_1) -- (B_1) -- (C_1) -- (D_1) -- cycle;\n\\draw (A) -- (A_1) (B) -- (B_1) (C) -- (C_1);\n\\draw [dashed] (D) -- (D_1);\n\\draw ($(A_1)!0.4!(C_1)$) node [above] {$P$} coordinate (P);\n\\draw (A_1)--(C_1);\n\\draw [dashed] (P)--(A)(P)--(B)(P)--(C);\n\\end{tikzpicture}\n\\end{center}", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023222": { + "id": "023222", + "content": "已知四面体 $ABCD$ 的体积可以用公式 $V=\\dfrac{1}{6}a b h \\sin \\theta$, 其中 $a, b$ 表示异面的两条棱的长度, $h$ 表示这两条棱的距离, $\\theta$ 表示这两条棱所成的角. 证明该体积公式成立.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023223": { + "id": "023223", + "content": "如图, 在圆锥 $PO$ 中, $AB$ 是底面直径, 点 $C$ 是圆 $O$ 上异于 $A, B$ 的一点, $D$ 为线段 $AC$ 的中点, 已知 $PO=OB=1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 2]\n\\draw (0,0) node [above left] {$O$} coordinate (O);\n\\draw (-1,0) node [left] {$A$} coordinate (A);\n\\draw (1,0) node [right] {$B$} coordinate (B);\n\\draw (0,1) node [above] {$P$} coordinate (P);\n\\draw (-60:1 and 0.25) node [below] {$C$} coordinate (C);\n\\draw ($(A)!0.5!(C)$) node [below] {$D$} coordinate (D);\n\\draw ($(P)!0.1!(B)$) node [above right] {$F$} coordinate (F);\n\\draw ($(P)!{0.1+sqrt(2)/2}!(B)$) node [above right] {$E$} coordinate (E);\n\\draw (A) arc (180:360:1 and 0.25) -- (P)--(A)(P)--(C);\n\\draw [dashed] (A) arc (180:0:1 and 0.25) (P)--(O)(A)--(B);\n\\draw [dashed] (A)--(C)--(O)(P)--(D)--(O);\n\\draw [dashed] (F)--(O)(F)--(C)(E)--(O)(E)--(C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $AC \\perp$ 平面 $PDO$;\\\\\n(2) 当三棱锥 $P-ABC$ 体积最大时, 求 $PD$ 和 $BC$ 所成角;\\\\\n(3) 若 $BC=1$, 点 $E, F$ 在线段 $PB$ 上移动, 且 $EF=1$, 试问三棱锥 $F-OCE$ 的体积是否为定值? 若是, 求出该定值; 若不是, 说明理由.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "25届周末卷补充题目", + "edit": [ + "20240106\t杨懿荔" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, "030001": { "id": "030001", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0