收集使用记录功能已能使用, 可自适应考试卷与平时卷
This commit is contained in:
parent
3cd434c5e6
commit
4d3ec1b020
|
|
@ -1475,5 +1475,138 @@ def ExtractProblemIDs(paperdict,pro_dict):#从备课组材料的每一张讲义
|
|||
output.append(id)
|
||||
return(output)
|
||||
|
||||
|
||||
def ParseZipname(zipfilename): #小闲平台的zip文件中获得试卷编号, 返回试卷编号字符串
|
||||
xiaoxianpid = re.findall(r"^(\d*?)_",os.path.split(zipfilename)[1])
|
||||
return xiaoxianpid[0]
|
||||
|
||||
def FindFile(dir,filename): #在指定目录及子目录下寻找特定文件名的文件, 返回文件所在的路径列表
|
||||
pathlist = []
|
||||
for path,m,filenames in os.walk(dir):
|
||||
if filename in filenames:
|
||||
pathlist.append(path)
|
||||
return pathlist
|
||||
|
||||
def FindPaper(xiaoxianpid, answersheetpath): #根据小闲的试卷编号和答题纸对应json的根目录寻找题库的试卷编号,届别,题号, 返回(题库试卷编号,届别,题号列表), 如果未找到则返回False
|
||||
answersheetpathlist = FindFile(answersheetpath,"答题纸对应.json")
|
||||
foundpid = False
|
||||
for dir in answersheetpathlist:
|
||||
filepath = os.path.join(dir,"答题纸对应.json")
|
||||
anssheetjson = load_dict(filepath)
|
||||
if xiaoxianpid in anssheetjson:
|
||||
foundpid = True
|
||||
grade = "20"+re.findall(r"\d{2}届",dir)[0]
|
||||
pid = anssheetjson[xiaoxianpid]["id"]
|
||||
notesjson = load_dict(os.path.join(dir,"校本材料.json"))
|
||||
idlist = []
|
||||
for part in anssheetjson[xiaoxianpid]["parts"]:
|
||||
idlist += notesjson["notes"][pid][part].copy()
|
||||
if "marks" in anssheetjson[xiaoxianpid]:
|
||||
marks = anssheetjson[xiaoxianpid]["marks"]
|
||||
else:
|
||||
marks = []
|
||||
break
|
||||
if foundpid:
|
||||
return(pid,grade,idlist,marks)
|
||||
else:
|
||||
return False
|
||||
|
||||
def CheckPaperType(filepath,filename): #根据filepath(通常是小闲的zip解压出的目录)和filename(通常是"小题分_按学号(数学).xlsx")检测试卷类型, 未找到该文件则返回False, 找到文件且是日常试卷返回"日常卷", 找到文件且不是日常试卷返回"考试卷"
|
||||
statsfilepathlist = FindFile(filepath,filename)
|
||||
if statsfilepathlist == []:
|
||||
return False
|
||||
else:
|
||||
dir = statsfilepathlist[0]
|
||||
dfcurrent = pd.read_excel(os.path.join(dir,filename))
|
||||
if re.findall(r"第\d*步",str(dfcurrent.loc[1,:])) == []:
|
||||
return "日常卷"
|
||||
else:
|
||||
return "考试卷"
|
||||
|
||||
def generateColIndexandMarks(filepath,statsfilename,paperinfo): #根据filepath(是一个有statsfilename的文件夹列表)中第一个路径中的数据文件, statsfilename数据文件名, 及paperinfo(FindPaper返回的结果)寻找excel文件中有效的列的位置和相应的满分分数
|
||||
dir = filepath[0]
|
||||
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
|
||||
validcols = []
|
||||
for i in range(len(dfcurrent.columns)):
|
||||
colname = str(dfcurrent.iloc[1,i])
|
||||
if ("单选" in colname or "填空" in colname or "主观" in colname or "步" in colname) and re.findall("[ABCD]",colname) == []:
|
||||
validcols.append(i)
|
||||
for col in range(len(validcols)-1,-1,-1):
|
||||
colname = str(dfcurrent.iloc[1,validcols[col]])
|
||||
if "主观" in colname:
|
||||
colname_main = re.findall(r"^([\d\.]*)[\($]",colname[2:])[0]
|
||||
t = [dfcurrent.iloc[1,c] for c in validcols[col+1:]]
|
||||
t = str(t)
|
||||
if colname_main in t:
|
||||
validcols.pop(col)
|
||||
if paperinfo[3] == []:
|
||||
marks = [1] * len(validcols)
|
||||
else:
|
||||
marks = paperinfo[3]
|
||||
if len(marks) == len(validcols):
|
||||
return (validcols,marks)
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def CheckValidity(classpath,gradename,threshold): #根据文件夹classpath, 年级名gradename和提交比例threshold, 检测提交人数是否不小于threshold, 返回(班级名, 提交是否有效)
|
||||
classname_raw = re.findall(r"(高[一二三])(\d*?)班",classpath)[0]
|
||||
classname = gradename + classname_raw[0] + classname_raw[1].zfill(2) + "班"
|
||||
df = pd.read_excel(os.path.join(os.path.split(classpath)[0],"学科总体分析.xlsx"))
|
||||
totalstudents = df.loc[2,df.columns[1]]
|
||||
validstudents = df.loc[2,df.columns[2]]
|
||||
classvalidflag = False
|
||||
if threshold * totalstudents < validstudents:
|
||||
print(f"{classname} 有效, 共 {totalstudents} 人, 提交 {validstudents} 人")
|
||||
classvalidflag = True
|
||||
else:
|
||||
print(f"!!! {classname} 无效, 共 {totalstudents} 人, 提交 {validstudents} 人")
|
||||
return (classname,classvalidflag)
|
||||
|
||||
def generateIDtoUsageCorrespondence(idlist,validcols,names): #根据idlist(题库ID列表), validcols(有效列位置列表), names(题目名称列表)自动生成一个字典, 键值为题库ID, 内容为该题对应的列位置列表
|
||||
corr_dict = {}
|
||||
for i in range(len(idlist)):
|
||||
ind = i+1
|
||||
collist = []
|
||||
for j in range(len(validcols)):
|
||||
n = names[j]
|
||||
if not "步" in n:
|
||||
name = re.findall(r"^([^\(]*)",n)[0]
|
||||
else:
|
||||
name = re.findall(r"^([^第]*)",n)[0]
|
||||
if ind == getindex(name):
|
||||
collist.append(j)
|
||||
corr_dict[idlist[i]] = collist
|
||||
return corr_dict
|
||||
|
||||
def CalculateUsages(statsfilepathlist,statsfilename,gradename,threshold,marks,correspondence_dict,validcols,date): #根据统计数据所在的路径,文件名,年级,阈值,分数列表和题号列数(0-len(validcols))对应字典,以及原excel文件中的有效列位置validcols, 日期date, 生成usages的metadata.txt文件的内容, 如果有正确率大于1的则返回False
|
||||
output = "ans\n\n\n"
|
||||
validflag = True
|
||||
for dir in statsfilepathlist:
|
||||
classname, valid = CheckValidity(dir,gradename,threshold)
|
||||
if valid:
|
||||
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
|
||||
means = dfcurrent.iloc[2:-2,validcols].mean()/marks
|
||||
if max(means)>1:
|
||||
print("满分数据有误!!!")
|
||||
validflag = False
|
||||
else:
|
||||
means_out = [f"{t:.3f}" for t in means]
|
||||
for id in correspondence_dict:
|
||||
cols = correspondence_dict[id]
|
||||
diffs = "\t".join([means_out[u] for u in cols])
|
||||
usages = f"{date}\t{classname}\t{diffs}"
|
||||
output += f"{id}\n{usages}\n\n\n"
|
||||
if validflag:
|
||||
return output
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def getindex(string,pos = 2):
|
||||
para = string.split(".")
|
||||
return int(para[pos-1])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("数据库工具, import用.")
|
||||
129
工具v2/收集使用记录.py
129
工具v2/收集使用记录.py
|
|
@ -1,97 +1,16 @@
|
|||
"""工程中"""
|
||||
zipfilepath = r"D:\temp\222817032234165544977_G20260160选择性必修第四章数列复习_高一_数学.zip"
|
||||
# zipfilepath = r"D:\temp\222817041862672707412_控江中学2023学年第一学期高一数学期末考试_高一_数学.zip"
|
||||
date = "20240126"
|
||||
threshold = 0.75 #设置最低提交人数比例
|
||||
|
||||
|
||||
from database_tools import *
|
||||
import zipfile,shutil
|
||||
|
||||
|
||||
zipfilepath = r"D:\temp\222817032234165544977_G20260160选择性必修第四章数列复习_高一_数学.zip"
|
||||
# zipfilepath = r"D:\temp\222817041862672707412_控江中学2023学年第一学期高一数学期末考试_高一_数学.zip"
|
||||
tempdir = "临时文件/zips"
|
||||
statsfilename = "小题分_按学号(数学).xlsx"
|
||||
threshold = 0.96 #设置最低提交人数
|
||||
answersheetseekingpath = "../备课组"
|
||||
|
||||
def ParseZipname(zipfilename): #小闲平台的zip文件中获得试卷编号, 返回试卷编号字符串
|
||||
xiaoxianpid = re.findall(r"^(\d*?)_",os.path.split(zipfilename)[1])
|
||||
return xiaoxianpid[0]
|
||||
|
||||
def FindFile(dir,filename): #在指定目录及子目录下寻找特定文件名的文件, 返回文件所在的路径列表
|
||||
pathlist = []
|
||||
for path,m,filenames in os.walk(dir):
|
||||
if filename in filenames:
|
||||
pathlist.append(path)
|
||||
return pathlist
|
||||
|
||||
def FindPaper(xiaoxianpid, answersheetpath): #根据小闲的试卷编号和答题纸对应json的根目录寻找题库的试卷编号,届别,题号, 返回(题库试卷编号,届别,题号列表), 如果未找到则返回False
|
||||
answersheetpathlist = FindFile(answersheetpath,"答题纸对应.json")
|
||||
foundpid = False
|
||||
for dir in answersheetpathlist:
|
||||
filepath = os.path.join(dir,"答题纸对应.json")
|
||||
anssheetjson = load_dict(filepath)
|
||||
if xiaoxianpid in anssheetjson:
|
||||
foundpid = True
|
||||
grade = "20"+re.findall(r"\d{2}届",dir)[0]
|
||||
pid = anssheetjson[xiaoxianpid]["id"]
|
||||
notesjson = load_dict(os.path.join(dir,"校本材料.json"))
|
||||
idlist = []
|
||||
for part in anssheetjson[xiaoxianpid]["parts"]:
|
||||
idlist += notesjson["notes"][pid][part].copy()
|
||||
if "marks" in anssheetjson[xiaoxianpid]:
|
||||
marks = anssheetjson[xiaoxianpid]["marks"]
|
||||
else:
|
||||
marks = []
|
||||
break
|
||||
if foundpid:
|
||||
return(pid,grade,idlist,marks)
|
||||
else:
|
||||
return False
|
||||
|
||||
def CheckPaperType(filepath,filename): #根据filepath(通常是小闲的zip解压出的目录)和filename(通常是"小题分_按学号(数学).xlsx")检测试卷类型, 未找到该文件则返回False, 找到文件且是日常试卷返回"日常卷", 找到文件且不是日常试卷返回"考试卷"
|
||||
statsfilepathlist = FindFile(filepath,filename)
|
||||
if statsfilepathlist == []:
|
||||
return False
|
||||
else:
|
||||
dir = statsfilepathlist[0]
|
||||
dfcurrent = pd.read_excel(os.path.join(dir,filename))
|
||||
if re.findall(r"第\d*步",str(dfcurrent.loc[1,:])) == []:
|
||||
return "日常卷"
|
||||
else:
|
||||
return "考试卷"
|
||||
|
||||
def generateColIndexandMarks(filepath,paperinfo): #根据filepath(是一个有statsfilename的文件夹列表)中第一个路径中的数据文件及paperinfo(FindPaper返回的结果)寻找excel文件中有效的列的位置和相应的满分分数
|
||||
dir = filepath[0]
|
||||
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
|
||||
validcols = []
|
||||
if papertype == "日常卷":
|
||||
for i in range(len(dfcurrent.columns)):
|
||||
colname = str(dfcurrent.iloc[1,i])
|
||||
if ("单选" in colname or "填空" in colname or "主观" in colname) and re.findall("[ABCD]",colname) == []:
|
||||
validcols.append(i)
|
||||
marks = [1] * len(validcols)
|
||||
elif papertype == "考试卷":
|
||||
for i in range(len(dfcurrent.columns)):
|
||||
colname = str(dfcurrent.iloc[1,i])
|
||||
if ("单选" in colname or "填空" in colname or "主观" in colname or "步" in colname) and re.findall("[ABCD]",colname) == []:
|
||||
validcols.append(i)
|
||||
for col in range(len(validcols)-1,-1,-1):
|
||||
colname = str(dfcurrent.iloc[1,validcols[col]])
|
||||
if "主观" in colname:
|
||||
colname_main = re.findall(r"^([\d\.]*)[\($]",colname[2:])[0]
|
||||
t = [dfcurrent.iloc[1,c] for c in validcols[col+1:]]
|
||||
t = str(t)
|
||||
if colname_main in t:
|
||||
validcols.pop(col)
|
||||
if paperinfo[3] == []:
|
||||
marks = [1] * len(validcols)
|
||||
else:
|
||||
marks = paperinfo[3]
|
||||
if len(marks) == len(validcols):
|
||||
return (validcols,marks)
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
try:
|
||||
|
|
@ -100,40 +19,28 @@ try:
|
|||
except:
|
||||
pass
|
||||
|
||||
|
||||
|
||||
xiaoxianpid = ParseZipname(zipfilepath)
|
||||
paperinfo = FindPaper(xiaoxianpid, answersheetseekingpath)
|
||||
|
||||
|
||||
gradename = paperinfo[1]
|
||||
idlist = paperinfo[2]
|
||||
|
||||
zf = zipfile.ZipFile(zipfilepath)
|
||||
zf.extractall(tempdir) #解压zip文件中的所有内容到tempdir
|
||||
|
||||
papertype = CheckPaperType(tempdir,statsfilename)
|
||||
# papertype = CheckPaperType(tempdir,statsfilename)
|
||||
statsfilepathlist = FindFile(tempdir,statsfilename)
|
||||
validcols,marks = generateColIndexandMarks(statsfilepathlist,statsfilename,paperinfo)
|
||||
dfcurrent = pd.read_excel(os.path.join(statsfilepathlist[0],statsfilename))
|
||||
correspondence_dict = generateIDtoUsageCorrespondence(idlist,validcols,dfcurrent.iloc[1,validcols])
|
||||
output = CalculateUsages(statsfilepathlist,statsfilename,gradename,threshold,marks,correspondence_dict,validcols,date)
|
||||
SaveTextFile(output,"文本文件/metadata.txt")
|
||||
print("数据文件已输出至metadata.txt")
|
||||
|
||||
validcols,marks = generateColIndexandMarks(statsfilepathlist,paperinfo)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
pass
|
||||
|
||||
|
||||
# print(ParseZipname(zipfilepath))
|
||||
|
||||
# df = pd.read_excel(os.path.join(os.path.split(dir)[0],"学科总体分析.xlsx"))
|
||||
# totalstudents = df.loc[2,df.columns[1]]
|
||||
# validstudents = df.loc[2,df.columns[2]]
|
||||
# classname = re.findall(r"高[一二三]\d*?班",dir)[0]
|
||||
# classvalidflag = False
|
||||
# if threshold * totalstudents < validstudents:
|
||||
# print(f"{classname} 有效, 共 {totalstudents} 人, 提交 {validstudents} 人")
|
||||
# classvalidflag = True
|
||||
# else:
|
||||
# print(f"!!! {classname} 无效, 共 {totalstudents} 人, 提交 {validstudents} 人")
|
||||
# if classvalidflag:
|
||||
Reference in New Issue