收集使用记录功能已能使用, 可自适应考试卷与平时卷

This commit is contained in:
weiye.wang 2024-01-27 15:19:20 +08:00
parent 3cd434c5e6
commit 4d3ec1b020
2 changed files with 151 additions and 111 deletions

View File

@ -1475,5 +1475,138 @@ def ExtractProblemIDs(paperdict,pro_dict):#从备课组材料的每一张讲义
output.append(id)
return(output)
def ParseZipname(zipfilename): #小闲平台的zip文件中获得试卷编号, 返回试卷编号字符串
xiaoxianpid = re.findall(r"^(\d*?)_",os.path.split(zipfilename)[1])
return xiaoxianpid[0]
def FindFile(dir,filename): #在指定目录及子目录下寻找特定文件名的文件, 返回文件所在的路径列表
pathlist = []
for path,m,filenames in os.walk(dir):
if filename in filenames:
pathlist.append(path)
return pathlist
def FindPaper(xiaoxianpid, answersheetpath): #根据小闲的试卷编号和答题纸对应json的根目录寻找题库的试卷编号,届别,题号, 返回(题库试卷编号,届别,题号列表), 如果未找到则返回False
answersheetpathlist = FindFile(answersheetpath,"答题纸对应.json")
foundpid = False
for dir in answersheetpathlist:
filepath = os.path.join(dir,"答题纸对应.json")
anssheetjson = load_dict(filepath)
if xiaoxianpid in anssheetjson:
foundpid = True
grade = "20"+re.findall(r"\d{2}",dir)[0]
pid = anssheetjson[xiaoxianpid]["id"]
notesjson = load_dict(os.path.join(dir,"校本材料.json"))
idlist = []
for part in anssheetjson[xiaoxianpid]["parts"]:
idlist += notesjson["notes"][pid][part].copy()
if "marks" in anssheetjson[xiaoxianpid]:
marks = anssheetjson[xiaoxianpid]["marks"]
else:
marks = []
break
if foundpid:
return(pid,grade,idlist,marks)
else:
return False
def CheckPaperType(filepath,filename): #根据filepath(通常是小闲的zip解压出的目录)和filename(通常是"小题分_按学号数学.xlsx")检测试卷类型, 未找到该文件则返回False, 找到文件且是日常试卷返回"日常卷", 找到文件且不是日常试卷返回"考试卷"
statsfilepathlist = FindFile(filepath,filename)
if statsfilepathlist == []:
return False
else:
dir = statsfilepathlist[0]
dfcurrent = pd.read_excel(os.path.join(dir,filename))
if re.findall(r"\d*步",str(dfcurrent.loc[1,:])) == []:
return "日常卷"
else:
return "考试卷"
def generateColIndexandMarks(filepath,statsfilename,paperinfo): #根据filepath(是一个有statsfilename的文件夹列表)中第一个路径中的数据文件, statsfilename数据文件名, 及paperinfo(FindPaper返回的结果)寻找excel文件中有效的列的位置和相应的满分分数
dir = filepath[0]
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
validcols = []
for i in range(len(dfcurrent.columns)):
colname = str(dfcurrent.iloc[1,i])
if ("单选" in colname or "填空" in colname or "主观" in colname or "" in colname) and re.findall("[ABCD]",colname) == []:
validcols.append(i)
for col in range(len(validcols)-1,-1,-1):
colname = str(dfcurrent.iloc[1,validcols[col]])
if "主观" in colname:
colname_main = re.findall(r"^([\d\.]*)[\($]",colname[2:])[0]
t = [dfcurrent.iloc[1,c] for c in validcols[col+1:]]
t = str(t)
if colname_main in t:
validcols.pop(col)
if paperinfo[3] == []:
marks = [1] * len(validcols)
else:
marks = paperinfo[3]
if len(marks) == len(validcols):
return (validcols,marks)
else:
return False
def CheckValidity(classpath,gradename,threshold): #根据文件夹classpath, 年级名gradename和提交比例threshold, 检测提交人数是否不小于threshold, 返回(班级名, 提交是否有效)
classname_raw = re.findall(r"(高[一二三])(\d*?)班",classpath)[0]
classname = gradename + classname_raw[0] + classname_raw[1].zfill(2) + ""
df = pd.read_excel(os.path.join(os.path.split(classpath)[0],"学科总体分析.xlsx"))
totalstudents = df.loc[2,df.columns[1]]
validstudents = df.loc[2,df.columns[2]]
classvalidflag = False
if threshold * totalstudents < validstudents:
print(f"{classname} 有效, 共 {totalstudents} 人, 提交 {validstudents}")
classvalidflag = True
else:
print(f"!!! {classname} 无效, 共 {totalstudents} 人, 提交 {validstudents}")
return (classname,classvalidflag)
def generateIDtoUsageCorrespondence(idlist,validcols,names): #根据idlist(题库ID列表), validcols(有效列位置列表), names(题目名称列表)自动生成一个字典, 键值为题库ID, 内容为该题对应的列位置列表
corr_dict = {}
for i in range(len(idlist)):
ind = i+1
collist = []
for j in range(len(validcols)):
n = names[j]
if not "" in n:
name = re.findall(r"^([^\(]*)",n)[0]
else:
name = re.findall(r"^([^第]*)",n)[0]
if ind == getindex(name):
collist.append(j)
corr_dict[idlist[i]] = collist
return corr_dict
def CalculateUsages(statsfilepathlist,statsfilename,gradename,threshold,marks,correspondence_dict,validcols,date): #根据统计数据所在的路径,文件名,年级,阈值,分数列表和题号列数(0-len(validcols))对应字典,以及原excel文件中的有效列位置validcols, 日期date, 生成usages的metadata.txt文件的内容, 如果有正确率大于1的则返回False
output = "ans\n\n\n"
validflag = True
for dir in statsfilepathlist:
classname, valid = CheckValidity(dir,gradename,threshold)
if valid:
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
means = dfcurrent.iloc[2:-2,validcols].mean()/marks
if max(means)>1:
print("满分数据有误!!!")
validflag = False
else:
means_out = [f"{t:.3f}" for t in means]
for id in correspondence_dict:
cols = correspondence_dict[id]
diffs = "\t".join([means_out[u] for u in cols])
usages = f"{date}\t{classname}\t{diffs}"
output += f"{id}\n{usages}\n\n\n"
if validflag:
return output
else:
return False
def getindex(string,pos = 2):
para = string.split(".")
return int(para[pos-1])
if __name__ == "__main__":
print("数据库工具, import用.")

View File

@ -1,97 +1,16 @@
"""工程中"""
zipfilepath = r"D:\temp\222817032234165544977_G20260160选择性必修第四章数列复习_高一_数学.zip"
# zipfilepath = r"D:\temp\222817041862672707412_控江中学2023学年第一学期高一数学期末考试_高一_数学.zip"
date = "20240126"
threshold = 0.75 #设置最低提交人数比例
from database_tools import *
import zipfile,shutil
zipfilepath = r"D:\temp\222817032234165544977_G20260160选择性必修第四章数列复习_高一_数学.zip"
# zipfilepath = r"D:\temp\222817041862672707412_控江中学2023学年第一学期高一数学期末考试_高一_数学.zip"
tempdir = "临时文件/zips"
statsfilename = "小题分_按学号数学.xlsx"
threshold = 0.96 #设置最低提交人数
answersheetseekingpath = "../备课组"
def ParseZipname(zipfilename): #小闲平台的zip文件中获得试卷编号, 返回试卷编号字符串
xiaoxianpid = re.findall(r"^(\d*?)_",os.path.split(zipfilename)[1])
return xiaoxianpid[0]
def FindFile(dir,filename): #在指定目录及子目录下寻找特定文件名的文件, 返回文件所在的路径列表
pathlist = []
for path,m,filenames in os.walk(dir):
if filename in filenames:
pathlist.append(path)
return pathlist
def FindPaper(xiaoxianpid, answersheetpath): #根据小闲的试卷编号和答题纸对应json的根目录寻找题库的试卷编号,届别,题号, 返回(题库试卷编号,届别,题号列表), 如果未找到则返回False
answersheetpathlist = FindFile(answersheetpath,"答题纸对应.json")
foundpid = False
for dir in answersheetpathlist:
filepath = os.path.join(dir,"答题纸对应.json")
anssheetjson = load_dict(filepath)
if xiaoxianpid in anssheetjson:
foundpid = True
grade = "20"+re.findall(r"\d{2}",dir)[0]
pid = anssheetjson[xiaoxianpid]["id"]
notesjson = load_dict(os.path.join(dir,"校本材料.json"))
idlist = []
for part in anssheetjson[xiaoxianpid]["parts"]:
idlist += notesjson["notes"][pid][part].copy()
if "marks" in anssheetjson[xiaoxianpid]:
marks = anssheetjson[xiaoxianpid]["marks"]
else:
marks = []
break
if foundpid:
return(pid,grade,idlist,marks)
else:
return False
def CheckPaperType(filepath,filename): #根据filepath(通常是小闲的zip解压出的目录)和filename(通常是"小题分_按学号数学.xlsx")检测试卷类型, 未找到该文件则返回False, 找到文件且是日常试卷返回"日常卷", 找到文件且不是日常试卷返回"考试卷"
statsfilepathlist = FindFile(filepath,filename)
if statsfilepathlist == []:
return False
else:
dir = statsfilepathlist[0]
dfcurrent = pd.read_excel(os.path.join(dir,filename))
if re.findall(r"\d*步",str(dfcurrent.loc[1,:])) == []:
return "日常卷"
else:
return "考试卷"
def generateColIndexandMarks(filepath,paperinfo): #根据filepath(是一个有statsfilename的文件夹列表)中第一个路径中的数据文件及paperinfo(FindPaper返回的结果)寻找excel文件中有效的列的位置和相应的满分分数
dir = filepath[0]
dfcurrent = pd.read_excel(os.path.join(dir,statsfilename))
validcols = []
if papertype == "日常卷":
for i in range(len(dfcurrent.columns)):
colname = str(dfcurrent.iloc[1,i])
if ("单选" in colname or "填空" in colname or "主观" in colname) and re.findall("[ABCD]",colname) == []:
validcols.append(i)
marks = [1] * len(validcols)
elif papertype == "考试卷":
for i in range(len(dfcurrent.columns)):
colname = str(dfcurrent.iloc[1,i])
if ("单选" in colname or "填空" in colname or "主观" in colname or "" in colname) and re.findall("[ABCD]",colname) == []:
validcols.append(i)
for col in range(len(validcols)-1,-1,-1):
colname = str(dfcurrent.iloc[1,validcols[col]])
if "主观" in colname:
colname_main = re.findall(r"^([\d\.]*)[\($]",colname[2:])[0]
t = [dfcurrent.iloc[1,c] for c in validcols[col+1:]]
t = str(t)
if colname_main in t:
validcols.pop(col)
if paperinfo[3] == []:
marks = [1] * len(validcols)
else:
marks = paperinfo[3]
if len(marks) == len(validcols):
return (validcols,marks)
else:
return False
try:
@ -100,40 +19,28 @@ try:
except:
pass
xiaoxianpid = ParseZipname(zipfilepath)
paperinfo = FindPaper(xiaoxianpid, answersheetseekingpath)
gradename = paperinfo[1]
idlist = paperinfo[2]
zf = zipfile.ZipFile(zipfilepath)
zf.extractall(tempdir) #解压zip文件中的所有内容到tempdir
papertype = CheckPaperType(tempdir,statsfilename)
# papertype = CheckPaperType(tempdir,statsfilename)
statsfilepathlist = FindFile(tempdir,statsfilename)
validcols,marks = generateColIndexandMarks(statsfilepathlist,statsfilename,paperinfo)
dfcurrent = pd.read_excel(os.path.join(statsfilepathlist[0],statsfilename))
correspondence_dict = generateIDtoUsageCorrespondence(idlist,validcols,dfcurrent.iloc[1,validcols])
output = CalculateUsages(statsfilepathlist,statsfilename,gradename,threshold,marks,correspondence_dict,validcols,date)
SaveTextFile(output,"文本文件/metadata.txt")
print("数据文件已输出至metadata.txt")
validcols,marks = generateColIndexandMarks(statsfilepathlist,paperinfo)
pass
# print(ParseZipname(zipfilepath))
# df = pd.read_excel(os.path.join(os.path.split(dir)[0],"学科总体分析.xlsx"))
# totalstudents = df.loc[2,df.columns[1]]
# validstudents = df.loc[2,df.columns[2]]
# classname = re.findall(r"高[一二三]\d*?班",dir)[0]
# classvalidflag = False
# if threshold * totalstudents < validstudents:
# print(f"{classname} 有效, 共 {totalstudents} 人, 提交 {validstudents} 人")
# classvalidflag = True
# else:
# print(f"!!! {classname} 无效, 共 {totalstudents} 人, 提交 {validstudents} 人")
# if classvalidflag: