20230105 afternoon

This commit is contained in:
WangWeiye 2023-01-05 16:47:18 +08:00
parent 0c744f6308
commit 4ed3960a22
2 changed files with 10 additions and 10 deletions

View File

@ -2,16 +2,16 @@
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"开始编译教师版本pdf文件: 临时文件/高三上末尾作业_教师用_20230104.tex\n",
"开始编译教师版本pdf文件: 临时文件/高三上末尾作业_教师用_20230105.tex\n",
"0\n",
"开始编译学生版本pdf文件: 临时文件/高三上末尾作业_学生用_20230104.tex\n",
"开始编译学生版本pdf文件: 临时文件/高三上末尾作业_学生用_20230105.tex\n",
"0\n"
]
}
@ -26,7 +26,7 @@
"\"\"\"---设置题目列表---\"\"\"\n",
"#字典字段为文件名, 之后为内容的题号\n",
"problems_dict = {\n",
"\"7.3.3-正态分布\":\"10903,30515,30516,30517,30518,30519,30520,30534,30535,30537,30538,30539,30540,30552\",\n",
"\"7.3.3-正态分布-done\":\"30515,30516,10903,30519,30534,30517,30518,30520,30535,30538,30540,30552\",\n",
"\"8.1.1-成对数据间的关系\":\"30521,30522,30523,30524,30554,30555\",\n",
"\"8.1.2-相关系数\":\"10905,10906,10908,30525,30526,30558,30559,30560,30561,30562,30591\",\n",
"\"8.2.1-一元线性回归分析的基本思想\":\"10911,10912,10914,30527,30528,30567,30568,30573\",\n",
@ -186,7 +186,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "mathdept",
"display_name": "Python 3.9.15 ('pythontest')",
"language": "python",
"name": "python3"
},
@ -205,7 +205,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc"
"hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
}
}
},

View File

@ -9,8 +9,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
"开始编译单元与课时目标信息pdf文件: 临时文件/课时目标及单元目标表_20230104.tex\n",
"开始编译课时划分信息pdf文件: 临时文件/按课时分类目标及题目清单_20230104.tex\n"
"开始编译单元与课时目标信息pdf文件: 临时文件/课时目标及单元目标表_20230105.tex\n",
"开始编译课时划分信息pdf文件: 临时文件/按课时分类目标及题目清单_20230105.tex\n"
]
},
{
@ -172,7 +172,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "mathdept",
"display_name": "Python 3.9.15 ('pythontest')",
"language": "python",
"name": "python3"
},
@ -191,7 +191,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc"
"hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
}
}
},