导入33道题目的对应单元

This commit is contained in:
weiye.wang 2023-06-27 19:42:17 +08:00
parent a223669fed
commit 4fdf3a4d82
1 changed files with 99 additions and 33 deletions

View File

@ -470901,7 +470901,9 @@
"id": "018237",
"content": "已知集合$M=\\{x | x+2 \\geq 0\\}$, $N=\\{x | x-1<0\\}$, 则$M \\cap N=$\\bracket{20}.\n\\fourch{$\\{x |-2 \\leq x<1\\}$}{$\\{x |-2<x \\leq 1\\}$}{$\\{x | x \\geq-2\\}$}{$\\{x | x<1\\}$}",
"objs": [],
"tags": [],
"tags": [
"第一单元"
],
"genre": "选择题",
"ans": "A",
"solution": "",
@ -470921,7 +470923,9 @@
"id": "018238",
"content": "在复平面内, 复数$z$对应的点的坐标是$(-1, \\sqrt{3})$, 则$z$的共轭复数$\\overline {z}=$\\bracket{20}.\n\\fourch{$1+\\sqrt{3} i$}{$1-\\sqrt{3} \\mathrm{i}$}{$-1+\\sqrt{3} i$}{$-1-\\sqrt{3} \\mathrm{i}$}",
"objs": [],
"tags": [],
"tags": [
"第五单元"
],
"genre": "选择题",
"ans": "D",
"solution": "",
@ -470941,7 +470945,9 @@
"id": "018239",
"content": "已知向量$\\overrightarrow {a}, \\overrightarrow {b}$满足$\\overrightarrow {a}+\\overrightarrow {b}=(2,3)$, $\\overrightarrow {a}-\\overrightarrow {b}=(-2,1)$, 则$|\\overrightarrow {a}|^2-|\\overrightarrow {b}|^2=$\\bracket{20}.\n\\fourch{$-2$}{$-1$}{$0$}{$1$}",
"objs": [],
"tags": [],
"tags": [
"第五单元"
],
"genre": "选择题",
"ans": "B",
"solution": "",
@ -470961,7 +470967,9 @@
"id": "018240",
"content": "下列函数中, 在区间$(0,+\\infty)$上单调递增的是\\bracket{20}.\n\\fourch{$f(x)=-\\ln x$}{$f(x)=\\dfrac{1}{2^x}$}{$f(x)=-\\dfrac{1}{x}$}{$f(x)=3^{|x-1|}$}",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "选择题",
"ans": "C",
"solution": "",
@ -470981,7 +470989,9 @@
"id": "018241",
"content": "$(2 x-\\dfrac{1}{x})^5$的展开式中$x$的系数为\\bracket{20}.\n\\fourch{$-40$}{$40$}{$-80$}{$80$}",
"objs": [],
"tags": [],
"tags": [
"第八单元"
],
"genre": "选择题",
"ans": "D",
"solution": "",
@ -471001,7 +471011,9 @@
"id": "018242",
"content": "已知抛物线$C: y^2=8 x$的焦点为$F$, 点$M$在$C$上. 若$M$到直线$x=-3$的距离为$5$, 则$| MF |=$\\bracket{20}.\n\\fourch{$7$}{$6$}{$5$}{$4$}",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "选择题",
"ans": "D",
"solution": "",
@ -471021,7 +471033,9 @@
"id": "018243",
"content": "在$\\triangle ABC$中, $(a+c)(\\sin A-\\sin C)=b(\\sin A-\\sin B)$, 则$\\angle C=$\\bracket{20}.\n\\fourch{$\\dfrac{\\pi}{6}$}{$\\dfrac{\\pi}{3}$}{$\\dfrac{2 \\pi}{3}$}{$\\dfrac{5 \\pi}{6}$}",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "选择题",
"ans": "B",
"solution": "",
@ -471041,7 +471055,9 @@
"id": "018244",
"content": "若$x y \\neq 0$, 则``$x+y=0$''是``$\\dfrac{y}{x}+\\dfrac{x}{y}=-2$''的\\bracket{20}.\n\\twoch{充分不必要条件}{必要不充分条件}{充要条件}{既不充分也不必要条件}",
"objs": [],
"tags": [],
"tags": [
"第一单元"
],
"genre": "选择题",
"ans": "C",
"solution": "",
@ -471061,7 +471077,9 @@
"id": "018245",
"content": "坡屋顶是我国传统建筑造型之一, 蕴含着丰富的数学元素. 安装灯带可以勾勒出建筑轮廓, 展现造型之美. 如图, 某坡屋顶可视为一个五面体, 其中两个面是全等的等腰梯形, 两个面是全等的等腰三角形. 若$AB=25 \\mathrm{m}$, $BC=10 \\mathrm{m}$, 且等腰梯形所在的平面、等腰三角形所在的平面与平面$ABCD$的夹角的正切值均为$\\dfrac{\\sqrt{14}}{5}$, 则该五面体的所有棱长之和为\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.25]\n\\draw (-12.5,0,5) node [left] {$A$} coordinate (A);\n\\draw (12.5,0,5) node [right] {$B$} coordinate (B);\n\\draw (12.5,0,-5) node [right] {$C$} coordinate (C);\n\\draw (-12.5,0,-5) node [left] {$D$} coordinate (D);\n\\draw (A) ++ (5,{sqrt(14)},-5) node [above] {$F$} coordinate (F);\n\\draw (B) ++ (-5,{sqrt(14)},-5) node [above] {$E$} coordinate (E);\n\\draw (D)--(A)--(B)--(C)--(E)--(F)--cycle(A)--(F)(B)--(E);\n\\draw [dashed] (D)--(C);\n\\end{tikzpicture}\n\\end{center}\n\\fourch{$102 \\mathrm{m}$}{$112 \\mathrm{m}$}{$117 \\mathrm{m}$}{$125 \\mathrm{m}$}",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "选择题",
"ans": "C",
"solution": "",
@ -471081,7 +471099,9 @@
"id": "018246",
"content": "已知数列$\\{a_n\\}$满足$a_{n+1}=\\dfrac{1}{4}(a_n-6)^3+6$($n=1,2,3, \\cdots$), 则\\bracket{20}.\n\\onech{当$a_1=3$时, $\\{a_n\\}$为递减数列, 且存在常数$M \\leq 0$, 使得$a_n>M$恒成立}{当$a_1=5$时, $\\{a_n\\}$为递增数列, 且存在常数$M \\leq 6$, 使得$a_n<M$恒成立}{当$a_1=7$时, $\\{a_n\\}$为递减数列, 且存在常数$M>6$, 使得$a_n>M$恒成立}{当$a_1=9$时, $\\{a_n\\}$为递增数列, 且存在常数$M>0$, 使得$a_n<M$恒成立}",
"objs": [],
"tags": [],
"tags": [
"第四单元"
],
"genre": "选择题",
"ans": "B",
"solution": "",
@ -471101,7 +471121,9 @@
"id": "018247",
"content": "已知函数$f(x)=4^x+\\log _2 x$, 则$f(\\dfrac{1}{2})=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$1$",
"solution": "",
@ -471121,7 +471143,9 @@
"id": "018248",
"content": "已知双曲线$C$的焦点为$(-2,0)$和$(2,0)$, 离心率为$\\sqrt{2}$, 则$C$的方程为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$\\dfrac{x^2}{2}-\\dfrac{y^2}{2}=1$",
"solution": "",
@ -471141,7 +471165,9 @@
"id": "018249",
"content": "已知命题$p$: 若$\\alpha, \\beta$为第一象限角, 且$\\alpha>\\beta$, 则$\\tan \\alpha>\\tan \\beta$. 能说明$p$为假命题的一组$\\alpha, \\beta$的值为$\\alpha=$\\blank{50}, $\\beta=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "$\\dfrac{9\\pi}{4}$, $\\dfrac{\\pi}{3}$",
"solution": "",
@ -471161,7 +471187,9 @@
"id": "018250",
"content": "我国度量衡的发展有着悠久的历史, 战国时期就已经出现了类似于砝码的、用来测量物体质量的``环权''. 已知$9$枚环权的质量 (单位: 铢) 从小到大构成项数为$9$的数列$\\{a_n\\}$, 该数列的前$3$项成等差数列, 后$7$项成等比数列, 且$a_1=1$, $a_5=12$, $a_9=192$, 则$a_7=$\\blank{50}; 数列$\\{a_n\\}$所有项的和为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "$48$, $384$",
"solution": "",
@ -471181,7 +471209,9 @@
"id": "018251",
"content": "设$a>0$, 函数$f(x)=\\begin{cases}x+2, & x<-a, \\\\ \\sqrt{a^2-x^2}, & -a \\leq x \\leq a,\\\\ -\\sqrt{x}-1, & x>a.\\end{cases}$ 给出下列四个结论:\\\\\n\\textcircled{1} $f(x)$在区间$(a-1,+\\infty)$上单调递减;\\\\\n\\textcircled{2} 当$a \\geq 1$时, $f(x)$存在最大值;\\\\\n\\textcircled{3} 设$M(x_1, f(x_1))$($x_1 \\leq a$), $N(x_2, f(x_2))$($x_2>a$), 则$|MN|>1$;\\\\\n\\textcircled{4} 设$P(x_3, f(x_3))$($x_3<-a$), $Q(x_4, f(x_4))$($x_4 \\geq -a$). 若$|PQ|$存在最小值, 则$a$的取值范围是$(0, \\dfrac{1}{2}]$.\\\\\n其中所有正确结论的序号是\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "\\textcircled{2}\\textcircled{3}",
"solution": "",
@ -471201,7 +471231,9 @@
"id": "018252",
"content": "如图, 在三棱锥$P-ABC$中, $PA \\perp$平面$ABC$, $PA=AB=BC=1$, $PC=\\sqrt{3}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 2.5]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (0,1,0) node [above] {$P$} coordinate (P);\n\\draw ({sqrt(2)},0,0) node [right] {$C$} coordinate (C);\n\\draw ({sqrt(2)/2},0,{sqrt(2)/2}) node [below] {$B$} coordinate (B);\n\\draw (A)--(B)--(C)--(P)--cycle(P)--(B);\n\\draw [dashed] (A)--(C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $BC \\perp$平面$PAB$;\\\\\n(2) 求二面角$A-PC-B$的大小.",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "解答题",
"ans": "(1) 证明略; (2) $\\dfrac{\\pi}{3}$",
"solution": "",
@ -471221,7 +471253,9 @@
"id": "018253",
"content": "设函数$f(x)=\\sin \\omega x \\cos \\varphi+\\cos \\omega x \\sin \\varphi$($\\omega>0$, $|\\varphi|<\\dfrac{\\pi}{2}$).\\\\\n(1) 若$f(0)=-\\dfrac{\\sqrt{3}}{2}$, 求$\\varphi$的值;\\\\\n(2) 已知$f(x)$在区间$[-\\dfrac{\\pi}{3}, \\dfrac{2 \\pi}{3}]$上单调递增, $f(\\dfrac{2 \\pi}{3})=1$, 再从条件\\textcircled{1}、条件\\textcircled{2}、条件\\textcircled{3}这三个条件中选择一个作为已知, 使函数$f(x)$存在, 求$\\omega, \\varphi$的值.\\\\\n条件\\textcircled{1}: $f(\\dfrac{\\pi}{3})=\\sqrt{2}$;\\\\\n条件\\textcircled{2}: $f(-\\dfrac{\\pi}{3})=-1$;\\\\\n条件\\textcircled{3}: $f(x)$在区间$[-\\dfrac{\\pi}{2},-\\dfrac{\\pi}{3}]$上单调递减.",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "解答题",
"ans": "(1) $\\varphi=-\\dfrac{\\pi}{3}$; (2) 选条件\\textcircled{1}不能使函数$f(x)$存在, 条件\\textcircled{2}\\textcircled{3}均可解得$\\omega = 1$, $\\varphi=-\\dfrac{\\pi}{6}$",
"solution": "",
@ -471241,7 +471275,9 @@
"id": "018254",
"content": "为研究某种农产品价格变化的规律, 收集得到了该农产品连续$40$天的价格变化数据, 如下表所示. 在描述价格变化时, 用``$+$''表示``上涨'', 即当天价格比前一天价格高; 用``$-$''表示``下跌'', 即当天价格比前一天价格低; 用``$0$''表示``不变'', 即当天价格与前一天价格相同. \n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}\n\\hline 时段 & \\multicolumn{10}{c|}{ 价格变化 } \\\\\n\\hline 第 1 天到第 10 天 &$-$&$+$&$+$&$0$&$-$&$-$&$-$&$+$&$+$&$0$ \\\\\n\\hline 第 11 天到第 20 天 & $+$&$0$&$-$&$-$&$+$&$-$&$+$&$0$&$0$&$+$\\\\\n\\hline 第 21 天到第 30 天 &$0$&$+$&$+$&$0$&$-$&$-$&$-$&$+$&$+$&$0$ \\\\\n\\hline 第31天到第40天 & $+$&$0$&$+$&$-$&$-$&$-$&$+$&$0$&$-$&$+$\\\\\n\\hline\n\\end{tabular}\n\\end{center}\n用频率估计概率.\\\\\n(1) 试估计该农产品价格``上涨''的概率;\\\\\n(2) 假设该农产品每天的价格变化是相互独立的. 在未来的日子里任取$4$天, 试估计该农产品价格在这$4$天中$2$天``上涨''、 $1$天``下跌''、 $1$天``不变''的概率;\\\\\n(3) 假设该农产品每天的价格变化只受前一天价格变化的影响. 判断第$41$天该农产品价格``上涨''``下跌''和``不变''的概率估计值哪个最大. (结论不要求证明)",
"objs": [],
"tags": [],
"tags": [
"第八单元"
],
"genre": "解答题",
"ans": "(1) $0.4$; (2) $0.168$; (3) 不变的概率最大",
"solution": "",
@ -471261,7 +471297,9 @@
"id": "018255",
"content": "已知椭圆$E: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$)的离心率为$\\dfrac{\\sqrt{5}}{3}$, $A$、$C$分别是$E$的上、下顶点, $B$、$D$分别是$E$的左、右顶点, $|AC|=4$.\\\\\n(1) 求$E$的方程;\\\\\n(2) 设$P$为第一象限内$E$上的动点, 直线$PD$与直线$B C$交于点$M$, 直线$P A$与直线$y=-2$交于点$N$. 求证: $MN\\parallel CD$.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "解答题",
"ans": "(1) $\\dfrac{x^2}{9}+\\dfrac{y^2}{4}=1$; (2) 证明略",
"solution": "",
@ -471281,7 +471319,9 @@
"id": "018256",
"content": "设函数$f(x)=x-x^3 \\mathrm{e}^{a x+b}$, 曲线$y=f(x)$在点$(1, f(1))$处的切线方程为$y=-x+1$.\\\\\n(1) 求$a, b$的值;\\\\\n(2) 设函数$g(x)=f'(x)$, 求$g(x)$的单调区间;\\\\\n(3) 求$f(x)$的极值点个数.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "解答题",
"ans": "(1) $a=-1$, $b=1$; (2) 单调递减区间为$(0,3-\\sqrt{3})$和$(3+\\sqrt{3},+\\infty)$, 单调递增区间为$(-\\infty, 0)$和$(3-\\sqrt{3}, 3+\\sqrt{3})$; (3) $3$个",
"solution": "",
@ -471301,7 +471341,9 @@
"id": "018257",
"content": "已知数列$\\{a_n\\}, \\{b_n\\}$的项数均为$m$($m>2$), 且$a_n, b_n \\in\\{1, 2, \\cdots, m\\}$, $\\{a_n\\}, \\{b_n\\}$的前$n$项和分别为$A_n, B_n$, 并规定$A_0=B_0=0$. 对于$k \\in\\{0, 1, 2, \\cdots, m\\}$, 定义$r_k=\\max \\{i | B_i \\leq A_k,\\ i \\in\\{0, 1, 2, \\cdots, m\\}\\}$, 其中, $\\max M$表示数集$M$中最大的数.\\\\\n(1) 若$a_1=2$, $a_2=1$, $a_3=3$, $b_1=1$, $b_2=3$, $b_3=3$, 求$r_0, r_1, r_2, r_3$的值;\\\\\n(2) 若$a_1 \\geq b_1$, 且$2 r_j \\leq r_{j+1}+r_{j-1}$, $j=1, 2, \\cdots, m-1$, 求$r_n$;\\\\\n(3) 证明: 存在$p, q, s, t \\in\\{0, 1, 2, \\cdots, m\\}$, 满足$p>q$, $s>t$, 使得$A_p+B_t=A_q+B_s$.",
"objs": [],
"tags": [],
"tags": [
"第四单元"
],
"genre": "解答题",
"ans": "(1) $r_0=0$, $r_1=1$, $r_2=2$, $r_3=3$; (2) $r_n=n$($n \\in \\mathbf{N}$); (3) 证明略",
"solution": "",
@ -528932,7 +528974,9 @@
"id": "022127",
"content": "设函数$f(x)$在$\\mathbf{R}$上可导, 且$f'(1)=2022$, 则$\\displaystyle\\lim _{h \\to 0} \\dfrac{f(1+h)-f(1)}{2022 h}=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$1$",
"solution": "",
@ -528965,7 +529009,9 @@
"id": "022128",
"content": "函数$f(x)=1+x \\mathrm{e}^x$的导数为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$\\mathrm{e}^x+x\\mathrm{e}^x$",
"solution": "",
@ -528998,7 +529044,9 @@
"id": "022129",
"content": "函数$y=\\dfrac{\\sin x}{\\mathrm{e}^x}$的所有驻点是\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$k\\pi+\\dfrac{\\pi}{4}$, $k\\in \\mathbf{Z}$",
"solution": "",
@ -529031,7 +529079,9 @@
"id": "022130",
"content": "抛物线$y^2=-8 x$的准线方程为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$x=2$",
"solution": "",
@ -529064,7 +529114,9 @@
"id": "022131",
"content": "将参数方程$\\begin{cases}x=1+2 \\cos \\theta, \\\\ y=\\sqrt{2} \\sin \\theta\\end{cases}$($\\theta$为参数)化为普通方程, 所得方程是\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$x^2-2x+2y^2-3=0$",
"solution": "",
@ -529097,7 +529149,9 @@
"id": "022132",
"content": "已知过抛物线$y^2=8 x$的焦点$F$的直线与该抛物线交于$A$、$B$两点, 若弦$AB$的中点的横坐标为$4$, 则弦$AB$的长为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$12$",
"solution": "",
@ -529130,7 +529184,9 @@
"id": "022133",
"content": "直线$y=x$是曲线$y=a+\\ln x$的一条切线, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$1$",
"solution": "",
@ -529163,7 +529219,9 @@
"id": "022134",
"content": "函数$y=\\cos x+\\dfrac{1}{2} \\cos 2 x$, $x \\in[0, \\pi]$的严格增区间是\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "$[\\dfrac{2}{3}\\pi,\\pi ]$",
"solution": "",
@ -529196,7 +529254,9 @@
"id": "022135",
"content": "在极坐标系中, 点$P(m, \\dfrac{\\pi}{6})$($m>0$)到直线$\\rho \\cos (0-\\dfrac{\\pi}{6})=3$的距离为$2$, 则$m=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$1$或$5$",
"solution": "",
@ -529229,7 +529289,9 @@
"id": "022136",
"content": "已知函数$f(x)=x \\ln x+x^2$, $x_0$是函数$f(x)$的一个极值点, 则以下几个结论正确的是\\blank{50}.\\\\\n\\textcircled{1} $0<x_0<\\dfrac{1}{\\mathrm{e}}$; \\textcircled{2} $x_0>\\mathrm{e}$; \\textcircled{3} $f(x_0)+2x_0<0$; \\textcircled{4} $f(x_0)+2x_0>0$.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "\\textcircled{1}\\textcircled{4}",
"solution": "",
@ -529262,7 +529324,9 @@
"id": "022137",
"content": "设函数$f(x)=x^3-6x^2+9x+a$.\\\\\n(1) 当$a=2$时, 求函数$f(x)$在区间$[-2,2]$上的最值;\\\\\n(2) 若函数$f(x)$有且仅有两个零点, 求实数$a$的值.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "解答题",
"ans": "(1) 最大值为$6$, 最小值为$-48$; (2) $a=-4$",
"solution": "",
@ -529295,7 +529359,9 @@
"id": "022138",
"content": "设不经过坐标原点$O$的直线$l$与抛物线$y^2=4x$相交于不同两点$A$、$B$. 若$\\overrightarrow{OA}\\cdot \\overrightarrow{OB}=0$, 点$Q$在线段$AB$上且满足$OQ\\perp AB$, 求点$Q$的轨迹方程.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "解答题",
"ans": "$x^2+y^2-4x=0$($x\\ne 0$)",
"solution": "",