From 53e43893f7c9b379bb5bed234d4c97ef0cbda0fd Mon Sep 17 00:00:00 2001 From: WangWeiye Date: Tue, 9 May 2023 07:43:42 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E6=94=B913316=E9=A2=98=E7=9B=AE?= =?UTF-8?q?=E7=9A=84=E4=B8=80=E4=B8=AAbug?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 工具/latex界面修改题目内容.py | 4 ++-- 题库0.3/Problems.json | 5 +++-- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/工具/latex界面修改题目内容.py b/工具/latex界面修改题目内容.py index c255ab08..d6caf67a 100644 --- a/工具/latex界面修改题目内容.py +++ b/工具/latex界面修改题目内容.py @@ -1,7 +1,7 @@ import os,re,json """这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭""" -problems = "13311" -editor = "王伟叶" +problems = "13316" +editor = "余利成" def generate_number_set(string,dict): string = re.sub(r"[\n\s]","",string) diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index ae968168..52020625 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -349997,7 +349997,7 @@ }, "013316": { "id": "013316", - "content": "已知数列$\\{a_n\\}$是首项为$0$的递增数列, 前$n$项和为$S_n$满足$S_n=\\dfrac{1}{2} a_n^2+\\dfrac{1}{2} a_n$($n \\geq 1$, $n \\in \\mathbf{N}$).\\\\\n(1) 求数列$\\{a_n\\}$的通项公式;\\\\\n(2) 设$b_n=\\dfrac{4}{15} \\cdot(-2)^{a_n}$($n \\geq 1$, $n \\in \\mathbf{N}$), 对任意的正整数$k$, 将集合$\\{b_{2 k-1}, b_{2 k}$, $b_{2 k+1}\\}$中的三个元素排成一个递增的等差数列, 其公差为$d_k$, 求证: 数列$\\{d_k\\}$为等比数列.", + "content": "已知数列$\\{a_n\\}$是首项为$0$的严格增数列, 前$n$项和为$S_n$满足$S_n=\\dfrac{1}{2} a_n^2+\\dfrac{1}{2} a_n$($n \\geq 1$, $n \\in \\mathbf{N}$).\\\\\n(1) 求数列$\\{a_n\\}$的通项公式;\\\\\n(2) 设$b_n=\\dfrac{4}{15} \\cdot(-2)^{a_n}$($n \\geq 1$, $n \\in \\mathbf{N}$), 对任意的正整数$k$, 将集合$\\{b_{2 k-1}, b_{2 k}$, $b_{2 k+1}\\}$中的三个元素排成一个递增的等差数列, 其公差为$d_k$, 求证: 数列$\\{d_k\\}$为等比数列.", "objs": [], "tags": [ "第四单元" @@ -350009,7 +350009,8 @@ "usages": [], "origin": "2022版双基百分百", "edit": [ - "20230123\t王伟叶" + "20230123\t王伟叶", + "20230509\t余利成" ], "same": [], "related": [],