20230222 修复一个题库的问题

This commit is contained in:
weiye.wang 2023-02-22 19:49:31 +08:00
parent d704a45f47
commit 57084e2414
1 changed files with 0 additions and 256 deletions

View File

@ -431208,262 +431208,6 @@
"remark": "",
"space": ""
},
"031237": {
"id": "031237",
"content": "从编号分别为$1$、$2$、$3$、$4$、$5$、$6$的$6$个大小与质地相同的小球中随机取出$3$个, 则恰有$2$个小球编号相邻的概率为\\blank{50}.",
"objs": [
"K0803002B",
"K0818001X"
],
"tags": [
"第八单元",
"概率"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "教材复习题-20230220修改",
"edit": [
"20220624\t王伟叶, 余利成",
"20230220\t王伟叶"
],
"same": [],
"related": [
"000221"
],
"remark": "",
"space": ""
},
"031238": {
"id": "031238",
"content": "在$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^{100}$的展开式中, 有理项有\\blank{50}项.",
"objs": [
"K0819002X"
],
"tags": [
"第八单元",
"二项式定理"
],
"genre": "填空题",
"ans": "有$17$项是有理项",
"solution": "考虑$(x^{\\frac 12}+x^{-\\frac 13})^{100}$展开式的通项$T_{r+1}=\\mathrm{C}_{100}^rx^{\\frac{100-r}2}\\cdot (x^{-\\frac 13})^r=\\mathrm{C}_{100}^rx^{50-\\dfrac{3r}6}$.\n令$r=6k$($k\\in \\mathbf{Z}$), 则$0\\le 6k\\le 100$, 即$r=0,6,12,\\cdots ,96$.\n因此共有$17$个有理项.",
"duration": -1,
"usages": [],
"origin": "代数精编第九章排列组合-20230220修改",
"edit": [
"20220720\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"007528"
],
"remark": "",
"space": ""
},
"031239": {
"id": "031239",
"content": "已知$\\tan \\alpha =3$, 则$\\dfrac 1{\\sin ^2\\alpha +2\\sin \\alpha \\cos \\alpha}$的值为\\blank{50}.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "二期课改练习册高一第二学期-20230220修改",
"edit": [
"20220726\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"009553",
"008380"
],
"remark": "",
"space": ""
},
"031240": {
"id": "031240",
"content": "设向量$\\overrightarrow a$、$\\overrightarrow b$满足$|\\overrightarrow a|=5$, $|\\overrightarrow b|=6$, $(\\overrightarrow a+\\overrightarrow b)\\cdot \\overrightarrow b=21$, 则$\\langle \\overrightarrow a, \\overrightarrow b\\rangle =$\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "新教材必修第二册课堂练习-20230220修改",
"edit": [
"20220730\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"009626"
],
"remark": "",
"space": ""
},
"031241": {
"id": "031241",
"content": "函数$y=\\dfrac{x^2+7}{\\sqrt{x^2+4}}$的值域是\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届高三第二轮复习讲义-20230222修改",
"edit": [
"20230118\t王伟叶",
"20230222\t王伟叶"
],
"same": [],
"related": [
"012847"
],
"remark": "",
"space": ""
},
"031242": {
"id": "031242",
"content": "已知$f(x)=\\begin{cases}(2-a) x+1, & x<1, \\\\ 2ax, & x \\geq 1\\end{cases}$满足: 对任意$x_1 \\neq x_2$, 都有$\\dfrac{f(x_1)-f(x_2)}{x_1-x_2}>0$成立, 则实数$a$的取值范围是\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届高三第二轮复习讲义-20230222修改",
"edit": [
"20230118\t王伟叶",
"20230222\t王伟叶"
],
"same": [],
"related": [
"012851"
],
"remark": "",
"space": ""
},
"031237": {
"id": "031237",
"content": "从编号分别为$1$、$2$、$3$、$4$、$5$、$6$的$6$个大小与质地相同的小球中随机取出$3$个, 则恰有$2$个小球编号相邻的概率为\\blank{50}.",
"objs": [
"K0803002B",
"K0818001X"
],
"tags": [
"第八单元",
"概率"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "教材复习题-20230220修改",
"edit": [
"20220624\t王伟叶, 余利成",
"20230220\t王伟叶"
],
"same": [],
"related": [
"000221"
],
"remark": "",
"space": ""
},
"031238": {
"id": "031238",
"content": "在$(\\sqrt x+\\dfrac 1{\\sqrt[3]x})^{100}$的展开式中, 有理项有\\blank{50}项.",
"objs": [
"K0819002X"
],
"tags": [
"第八单元",
"二项式定理"
],
"genre": "填空题",
"ans": "有$17$项是有理项",
"solution": "考虑$(x^{\\frac 12}+x^{-\\frac 13})^{100}$展开式的通项$T_{r+1}=\\mathrm{C}_{100}^rx^{\\frac{100-r}2}\\cdot (x^{-\\frac 13})^r=\\mathrm{C}_{100}^rx^{50-\\dfrac{3r}6}$.\n令$r=6k$($k\\in \\mathbf{Z}$), 则$0\\le 6k\\le 100$, 即$r=0,6,12,\\cdots ,96$.\n因此共有$17$个有理项.",
"duration": -1,
"usages": [],
"origin": "代数精编第九章排列组合-20230220修改",
"edit": [
"20220720\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"007528"
],
"remark": "",
"space": ""
},
"031239": {
"id": "031239",
"content": "已知$\\tan \\alpha =3$, 则$\\dfrac 1{\\sin ^2\\alpha +2\\sin \\alpha \\cos \\alpha}$的值为\\blank{50}.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "二期课改练习册高一第二学期-20230220修改",
"edit": [
"20220726\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"009553",
"008380"
],
"remark": "",
"space": ""
},
"031240": {
"id": "031240",
"content": "设向量$\\overrightarrow a$、$\\overrightarrow b$满足$|\\overrightarrow a|=5$, $|\\overrightarrow b|=6$, $(\\overrightarrow a+\\overrightarrow b)\\cdot \\overrightarrow b=21$, 则$\\langle \\overrightarrow a, \\overrightarrow b\\rangle =$\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "新教材必修第二册课堂练习-20230220修改",
"edit": [
"20220730\t王伟叶",
"20230220\t王伟叶"
],
"same": [],
"related": [
"009626"
],
"remark": "",
"space": ""
},
"031241": {
"id": "031241",
"content": "函数$y=\\dfrac{x^2+7}{\\sqrt{x^2+4}}$的值域是\\blank{50}.",