From 595825e4d68456b412f44810106cab8366372727 Mon Sep 17 00:00:00 2001 From: "weiye.wang" Date: Wed, 19 Jun 2024 22:15:44 +0800 Subject: [PATCH] =?UTF-8?q?=E4=B8=80=E4=BA=9B=E9=AB=98=E4=BA=8C=E7=9A=84?= =?UTF-8?q?=E7=AD=94=E6=A1=88?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 工具v4/文本文件/metadata.txt | 455 ++++++++++++++++++++++++++++++++--- 1 file changed, 418 insertions(+), 37 deletions(-) diff --git a/工具v4/文本文件/metadata.txt b/工具v4/文本文件/metadata.txt index e397f1fc..151bf466 100644 --- a/工具v4/文本文件/metadata.txt +++ b/工具v4/文本文件/metadata.txt @@ -1,59 +1,440 @@ ans -025088 -$1$ +010689 +证明略 -025089 -$(0,0)$ +041040 +(1) $\overrightarrow{a}=(1,0,0)$.\\ +(2) $\overrightarrow{b}=(0,1,0)$.\\ +(3) $\overrightarrow{c}=(3 \sqrt{2}, 0,4)$.\\ +(4) $\overrightarrow{d}=(0,3 \sqrt{2}, 8)$. -025090 -$m$ +041041 +(1) 平面 $AA_1D_1D$.\\ +(2) 平面 $BB_1D_1D$. -025091 -$5$ +010793 +(1)$\dfrac34$\\(2)变大 -025092 -$2x$ +041042 +(1)$y=4x-2$\\(2)$[\dfrac{\pi}{4},\dfrac{\pi}{2})$ -025093 -$\mathrm{i}$ +022023 +(1)$(2,4)$\\(2)$(-\dfrac32,\dfrac94)$\\(3)$(\dfrac12,\dfrac14)$ -025094 -$-\dfrac{3}{4}$ +022025 +$x=k\pi,k\in \mathbb{Z}$ -025095 -$\dfrac{1}{2}\pm \dfrac{\sqrt{3}}{2}\mathrm{i}$ +041043 +$\dfrac{\sqrt{2}}{2}$ -025096 -$[-1,3]$ +022027 +(1)$y'=\dfrac12x^{-\dfrac12}-\dfrac{1}{x}$\\(2)$3x^2-2x+1$\\(3)$\mathrm{e}^x(2x+x^2)$\\(4)$\dfrac12x^{-\dfrac12}\sin{x}+\sqrt{x}\cos{x}$\\(5)$\ln{x}+1$ -025097 -$\dfrac{1}{2}$ +022028 +(1)$y'=\dfrac{\cos x}{x}-\dfrac{\sin x}{x^2}$\\(2)$y'=\dfrac{2x}{\ln x}-\dfrac{x}{\ln^2{x}}$\\(3)$y'=\dfrac{1}{x\ln {10}}$ -025098 -$(0,\dfrac{\pi}{2})$ +041047 +$1-\dfrac{\sqrt{2}}{2}$ -025099 -A +041048 +$-\dfrac13,\dfrac{13}{6}$ -025100 -A +041049 +$\dfrac59,\dfrac{5}{36}$ -025101 +004609 +(1)$\dfrac{25}{32}$\\ +(2)分布列为$\begin{pmatrix}900 & 1500\\ -3p^3+6p^2-3p+1 & 3p^3-6p^2+3p\end{pmatrix}$, $E[X]$的最大值为$350$万元, 此时$p=\dfrac13$ + +004610 +(1)$\dfrac{135}{512}$\\(2)分布列为$\begin{pmatrix}0 & 1 & 2 & \dots & n-1 & n\\ \dfrac14 & \dfrac34 \cdot \dfrac14 & (\dfrac34)^2 \cdot \dfrac14 & \dots & (\dfrac34)^{n-1} \cdot \dfrac14 & (\dfrac34)^n\end{pmatrix}$,$E[X]=3-3(\dfrac34)^n$ + +019240 D -025102 -(1) $6$; (2) $\pm 6$或$\pm 2\sqrt{11}$ +019245 +(1)$0.1\%$ +(2)$95.5\%$ -025103 -(1) $5$; (2) $\dfrac{-3\pm \sqrt{5}}{2}$ +041153 +$\textcircled{3},\textcircled{4}$ -025104 -(1) $2\sqrt{6}$; (2) $(\dfrac{\pi}{6},\dfrac{\pi}{4})$ +041206 +(1)$\frac{e}{2}$;(2) 任意 $a>0$, $b>0$ + 能使函数 $f(x)$ 与 $g(x)$ 在区间 $(0,+\infty)$ 内存在``$\mathrm{S}$ 点'' -025105 -(1) $a=-\dfrac{\pi}{6}$, $b=0$, $f(x)=2\sin (2x+\dfrac{\pi}{3})$, 最小正周期为$\pi$, 对称轴为$x=\dfrac{k\pi}{2}+\dfrac{\pi}{12}$, $k\in \mathbf{Z}$; (2) $[1,2)$; (3) $\dfrac{5\pi}{12}$ -032895 -(1) \textcircled{1}是``含谷函数'', 谷点是$0$, \textcircled{2} 不是含谷函数, 理由略; (2) $(2,18)$; (3) $\sqrt{2}$ +021270 +$(0,-8)$;$y=8$ +021271 +$(0,\frac{1}{16})$;$y=-\frac{1}{16}$ + +021272 +$(0,-\frac{1}{6})$;$y=\frac{1}{6}$ + +041007 +(1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$;\\ +(3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$; +(4) $y^2=16x$或$y^2=-16x$; +(5) $y^2=16x$或$x^2=-12y$. + +021276 +$\frac{5}{2}$ + +021279 +$(3,\pm 2\sqrt{3})$ + +021284 +$(3,\pm 2\sqrt{6})$ + +021269 +A + +021275 +$(\frac{m}{4},0)$;$x=-\frac{m}{4}$ + +041008 +$(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$ + +041009 +$y^2=12x$ + +041010 +2 + +041011 +$y^2=-8x$;$m=\pm 2\sqrt{6}$ + +008929 +$x^2=-y,x\in [-1,1]$ + +041012 +(1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$ + +021278 +$(1,\pm 2)$ + +041013 +最小值为4, $M(\frac{1}{4},1)$ + +041014 +$x^2=-12y$ + +021280 +$y^2=x$ + +041015 +$y^2=8x$ + +021304 +$\frac{\pi}{2}$ + +021308 +$\frac{11}{2}$ + +021287 +$\frac{45}{8}$ + +009840 +$(\frac{1}{4},0)$;$x=-\frac{1}{4}$ + +021309 +2 + +021290 +$(\frac{1}{2},1)$ + +021291 +$y^2=2x$或$y^2=6x$ + +041016 +相切 + +021339 +$x^2-x+y^2=0(x\neq 0)$ + +021289 +$4\sqrt{3}$ + +021293 +3 + +021294 +$(4,2)$ + +021295 +$-4$ + +021305 +$y^2=\pm 4x$ + +013106 +$[-1,1]$ + +021292 +B + +008930 +$0$或$-\frac{1}{2}$ + +008934 +$4x-y-15=0$ + +008922 +$y=\frac{1}{4},x>\frac{1}{16}$ + +021299 +2 + +021300 +$2\sqrt{15}$ + +021321 +(1) 定点$(2,0)$;(2) 4 + +041017 +(1) 6; (2) $\frac{1}{32}$ + +041018 +8 + +021316 +$\frac{11}{4}$ + +021326 +8 + +021319 +$y=\pm \frac{\sqrt{3}}{3}x+1$ + +041019 +$\frac{2}{p}$ + +041020 +D + +041021 +(1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$ + +021331 +D + +041022 +C + +041023 +必要不充分 + +021334 +$y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$ + +021335 +$y=-2x^2+8x-4$ + +021336 +$y^2=8x-16$ + +021337 +$x^2+y^2=1$ + +021338 +$3x+y-4=0(x \neq 1)$ + +021340 +$(x-1)^2+(y-2)^2=\frac{1}{9}$ + +021341 +$x+2y-5=0$ + +021342 +$x^2+y^2=4(x>0,y>0)$ + +021343 +$(x-3)^2=10y-15$ + +041024 +C + +008846 +0或$-\frac{1}{2}$ + +008847 +$\frac{3}{2}$ + +008852 +0或$\frac{1}{4}$或$-\frac{1}{2}$ + +008853 +$[-4,4]$ + +041025 +(2) $13x-2y=0$ + +041026 +$(-3,5),(1,1)$ + +041027 +$k<-2$或$k>2$或$k=\pm \sqrt{3}$ + +010704 +$(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$ + +010703 +当$01$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线 + +021348 +$x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$ + +021349 +0 + +021351 +$\frac{\pi}{3}$或$\frac{2\pi}{3}$ + +041028 +$(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$ + +021352 +4 + +021353 +D + +041029 +$x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) + +021354 +(1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$ + +021355 +$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线 + +009845 +$x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) + +009846 +$x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$ + +021358 +6 + +021359 +$\sqrt{17}$ + +021362 +$(3\sqrt{2},\sqrt{2})$ + +021363 +最大值$7$;最小值$\frac{3\sqrt{15}-4}{4}$ + +021364 +$\sqrt{33}+2\sqrt{6}$ + +012470 +B + +041030 +B + +041031 +A + +041032 +$(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$ + +041033 +13 + +041034 +$\frac{1+2\sqrt{21}}{3}$ + +041035 +$y=\pm 1$ + +041036 +$y^2=2x-2$ + +041037 +$7\sqrt{3}$ + +041038 +(1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆 +$\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$ + +041039 +(1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$; +(2) 点 $T$ 不在曲线 $\Gamma$ 上 + +022029 +$\frac{2}{3}$ + +022030 +(1)$y^{'}=20(5x-3)^{3}$;(2)$y^{'}=15(3x+2)^{4}$ + +022031 +(1)$y^{'}=12(1-3x)^{-5}$;(2)$y^{'}=-\frac{3}{4}(3x+1)^{-\frac{5}{4}}$ + +022032 +(1)$y^{'}=3\cos (3 x-\dfrac{\pi}{6})$;(2)$y^{'}=-2\sin{2x}$ + +022033 +(1)$y=-x+\frac{\pi}{3}+\frac{\sqrt{3}}{2}$;(2)$y=(-6ln2)x+2$ + +022034 +(1)$y^{'}=\mathrm{e}^{2x}(2\sin{3x}+3\cos{3x})$;(2)$y^{'}=\frac{1}{1-x^2}$;(3)$y^{'}=\frac{-2x^2+2x}{(2x+1)^4}$ + +022035 +(1)在$\mathbf{R}$上严格递增;(2)在$(-\infty,0),(0,+\infty)$严格递增 + +022036 +(1)在$(-\infty,1],[1,+\infty)$上严格递增, 在$[-1,0),(0,1]$上严格递减;(2)在$(-\infty,1]$上严减,在$[1,+\infty)$上严增;(3)在$(0,\frac{1}{e}]$上严减, 在$[\frac{1}{e},+\infty)$上严增 + +022037 +在$(-\infty,1],[4,+\infty)$上严格递增,在$[2,4]$上严减 + +022038 +(1)$(-\infty,0]$;(2)$[3,+\infty)$;(3)$a=3$;(4)$(0,3)$ + +022039 +(1)在$(0,+\infty)$上严格减; (2)在$(0,\frac{\pi}{4})$上严格减 + +022040 +略 + +022041 +$1$ + +022042 +在$(-\pi,\frac{\pi}{6}],[\frac{5\pi}{6},\pi)$上严增,在$[\frac{\pi}{6},\frac{5\pi}{6}]$上严格减,极大值为$f(\frac{\pi}{6})=\frac{\pi}{12}+\frac{\sqrt{3}}{2}$,极小值为$f(\frac{5\pi}{6})=\frac{5\pi}{12}-\frac{\sqrt{3}}{2}$ + +022043 +$a=-3,b=-24$ + +015852 +$(-\infty,-3)\cup(6,+\infty)$ + +022044 +$\frac{1}{\mathrm{e}}$ + +022045 +$(-\infty,-3]$ + +041044 +$1-e$ + +022046 +$f_{\max}(x)=f(-1)=10$, $f_{\min}(x)=f(-4)=-71$ + +022047 +$f_{\max}(x)=f(\dfrac{\pi}{6})=\dfrac{\pi}{6}+\sqrt{3}$ + +041045 +$e^{2}$ + +041046 +(1)$h(t)=-t^3+t-1$;(2)$(1,+\infty)$ + +031805 +(1)$S_{ABCD}=800\cos{\theta}(1+4\sin{\theta})$, $S_{\triangle CDP}=1600\cos{\theta}(1-\sin{\theta}),\sin{\theta}\in[\frac{1}{4},1)$;(2)当$\theta$为$\frac{\pi}{6}$时, 能使年总产值最大,最大值为$6000\sqrt{3}$ \ No newline at end of file