修改24748题面

This commit is contained in:
wangweiye7840 2024-03-25 16:26:34 +08:00
parent d8ddf75ca0
commit 61ad3e5988
1 changed files with 3 additions and 2 deletions

View File

@ -688922,7 +688922,7 @@
},
"024748": {
"id": "024748",
"content": "如图, 圆心在$O$处, 半径为$1$, 圆心角为$\\dfrac{\\pi}{2}$的扇形以直线$OP$为对称轴($P$在圆弧上). 设$A,B,A',B'$是扇形边界上的四点, 其中$A,A'$在扇形的两条半径上, $B,B'$在圆弧上, $AB\\parallel OP$, $AA'\\perp OP$, $BB'\\perp OP$. 用$\\theta = \\angle BOP$表示矩形$AA'B'A$的面积, 并求面积的最大值.",
"content": "如图, 圆心在$O$处, 半径为$1$, 圆心角为$\\dfrac{\\pi}{2}$的扇形以直线$OP$为对称轴($P$在圆弧上). 设$A,B,A',B'$是扇形边界上的四点, 其中$A,A'$在扇形的两条半径上, $B,B'$在圆弧上, $AB\\parallel OP$, $AA'\\perp OP$, $BB'\\perp OP$. 用$\\theta = \\angle BOP$表示矩形$AA'B'B$的面积, 并求面积的最大值.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) -- (2,0) arc (0:90:2) -- cycle;\n\\draw (0,0) node [below] {$O$} coordinate (O) (45:2) node [right] {$P$} coordinate (P);\n\\draw [dashed] ($(O)!-0.2!(P)$) -- ($(O)!1.2!(P)$);\n\\draw (30:2) node [right] {$B$} coordinate (B) (60:2) node [above] {$B'$} coordinate (B');\n\\draw ({sin(15)/sin(45)*2},0) node [below] {$A$} coordinate (A) (0,{sin(15)/sin(45)*2}) node [left] {$A'$} coordinate (A');\n\\draw (A)--(B)--(B')--(A')--cycle;\n\\draw [dashed] (O)--(B);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
@ -688932,7 +688932,8 @@
"usages": [],
"origin": "自拟题目",
"edit": [
"20240325\t赵琍琍"
"20240325\t赵琍琍",
"20240325\t王伟叶"
],
"same": [],
"related": [],