录入25届周末卷15补充题目并添加related

This commit is contained in:
weiye.wang 2024-01-07 17:19:04 +08:00
parent 9fa01d040d
commit 662d51996a
1 changed files with 817 additions and 13 deletions

View File

@ -24736,7 +24736,9 @@
"20220624\t朱敏慧, 王伟叶"
],
"same": [],
"related": [],
"related": [
"023325"
],
"remark": "",
"space": "",
"unrelated": []
@ -140124,7 +140126,8 @@
"000800",
"000873",
"004250",
"011628"
"011628",
"023322"
],
"remark": "",
"space": "",
@ -301894,7 +301897,9 @@
"20220806\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023319"
],
"remark": "",
"space": "4em",
"unrelated": []
@ -338396,7 +338401,9 @@
"same": [
"004558"
],
"related": [],
"related": [
"023322"
],
"remark": "",
"space": "",
"unrelated": []
@ -345906,7 +345913,9 @@
"20221212\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023325"
],
"remark": "",
"space": "",
"unrelated": []
@ -346877,7 +346886,9 @@
"20221214\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023322"
],
"remark": "",
"space": "",
"unrelated": []
@ -361241,7 +361252,9 @@
"20230118\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023337"
],
"remark": "",
"space": "",
"unrelated": []
@ -372009,7 +372022,9 @@
"20230123\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023332"
],
"remark": "",
"space": "",
"unrelated": []
@ -464561,7 +464576,8 @@
],
"same": [],
"related": [
"023279"
"023279",
"023320"
],
"remark": "",
"space": "",
@ -471560,7 +471576,9 @@
"20230602\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023339"
],
"remark": "",
"space": "",
"unrelated": []
@ -477465,7 +477483,9 @@
"20230606\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023320"
],
"remark": "",
"space": "",
"unrelated": []
@ -508961,7 +508981,9 @@
"20230707\t王伟叶"
],
"same": [],
"related": [],
"related": [
"023329"
],
"remark": "",
"space": "4em",
"unrelated": []
@ -525298,7 +525320,8 @@
],
"same": [],
"related": [
"023279"
"023279",
"023320"
],
"remark": "",
"space": "",
@ -623893,6 +623916,787 @@
"space": "4em",
"unrelated": []
},
"023318": {
"id": "023318",
"content": "已知$n\\in \\mathbf{N}$, 且$n\\ge 6$. 若 $\\mathrm{C}_n^6=\\mathrm{C}_n^4$, 则 $n=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023319": {
"id": "023319",
"content": "用 $1,2,3,4,5$ 组合成没有重复数字的三位数, 从中随机地取一个, 取得的数为偶数的概率是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"010871"
],
"remark": "",
"space": "",
"unrelated": []
},
"023320": {
"id": "023320",
"content": "总体是由编号为 $01$、$02$、$\\cdots$、$29$、$30$ 的 30 个个体组成. 利用下面的随机数表选取 5 个个体, 选取方法是从随机数表第 1 行的第 5 列和第 6 列数字开始由左到右依次选取两个数字, 则选出来的第 5 个个体的编号为\\blank{50}.\n\\begin{center}\n\\begin{tabular}{llllllll}\n7816 & 1572 & 0802 & 6315 & 0216 & 4319 & 9714 & 0198 \\\\\n3104 & 9234 & 4936 & 8200 & 3623 & 4869 & 6938 & 7181\n\\end{tabular}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"017154",
"017725",
"019851"
],
"remark": "",
"space": "",
"unrelated": []
},
"023321": {
"id": "023321",
"content": "记一个正方体的表面积为 $S_1$, 正方体的内切球的表面积为 $S_2$, 则 $\\dfrac{S_1}{S_2}=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023322": {
"id": "023322",
"content": "$(x+\\dfrac{1}{\\sqrt{x}})^9$ 的二项展开式中的常数项为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"004558",
"012209",
"012511"
],
"remark": "",
"space": "",
"unrelated": []
},
"023323": {
"id": "023323",
"content": "6 名同学排队站成一排, 要求甲、乙两人不相邻, 共有\\blank{50}种不同的排法.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023324": {
"id": "023324",
"content": "正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 $a$, $E$ 是棱 $DD_1$ 的中点, 则异面直线 $AB$ 与 $CE$ 的距离为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023325": {
"id": "023325",
"content": "若一个圆锥的母线长为 $2$, 母线与旋转轴的夹角大小为 $30^{\\circ}$ , 则这个圆锥的侧面积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"000668",
"012484"
],
"remark": "",
"space": "",
"unrelated": []
},
"023326": {
"id": "023326",
"content": "如图, 已知一个二面角的平面角为 $120^{\\circ}$, 它的棱上有两个点、 $B$, 线段 $AC$、$BD$ 分别在这个二面角的两个面内, 并且都垂直于棱 $AB, AC=\\sqrt{2}$, $BD=2 \\sqrt{2}$, $CD=3 \\sqrt{2}$, 则线段 $AB$ 的长为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.6]\n\\draw (0,0,0) coordinate (P) (4,0,0) coordinate (Q);\n\\foreach \\i in {P,Q}\n{\\draw (\\i) ++ (0,0,4) coordinate (\\i_1) (\\i) ++ (0,{1.3*sqrt(3)},-1.3) coordinate (\\i_2);};\n\\draw (P)--(Q)--(Q_2)--(P_2)--cycle(P)--(P_1)--(Q_1)--(Q);\n\\draw (1,0,0) node [above left] {$A$} coordinate (A);\n\\draw (3,0,0) node [above] {$B$} coordinate (B);\n\\draw (A) ++ (0,{sqrt(3)},-1) node [left] {$C$} coordinate (C);\n\\draw (B) ++ (0,0,{2*sqrt(2)}) node [right] {$D$} coordinate (D);\n\\draw (C)--(D)(A)--(C)(B)--(D);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023327": {
"id": "023327",
"content": "某位同学参加物理、化学、生物科目的等级考, 依据以往成绩估算该同学在物理、化学、生物科目等级中达到 A$+$的概率分别为 $\\dfrac{5}{6}, \\dfrac{3}{4}, \\dfrac{3}{5}$ , 假设各门科目考试的结果互不影响, 则该同学等级考至多有 1 门学科没有获得 A$+$的概率为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023328": {
"id": "023328",
"content": "如图所示, 一个灯笼由一根提竿 $PQ$ 和一个圆柱组成, 提竿平行与圆柱的底面, 在圆柱上下底面圆周上分别有两点 $A$、$B$, $AB$ 与圆柱的底面不垂直, 则在圆绕着其旋转轴旋转一周的过程中, 直线 $PQ$ 与直线 $AB$ 垂直的次数为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (-1,0) arc (180:360:1 and 0.25);\n\\draw (-1,0) --++ (0,2) (1,0) --++ (0,2);\n\\draw (-1,2) arc (180:540:1 and 0.25);\n\\draw [dashed] (-1,0) arc (180:0:1 and 0.25);\n\\filldraw (0,2) circle (0.03) coordinate (T);\n\\draw (T) --++ (0,0.5) node [above right] {$Q$} coordinate (Q) --++ (-2,0) node [left] {$P$} coordinate (P);\n\\draw (0,2) ++ (-60:1 and 0.25) node [above] {$A$} coordinate (A);\n\\draw (0,0) ++ (-120:1 and 0.25) node [below] {$B$} coordinate (B);\n\\draw [dashed] (A)--(B);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023329": {
"id": "023329",
"content": "有 8 本不同的书, 其中数学书 3 本, 外文书 2 本, 其他书 3 本, 若将这些书连排排成一列放在书架上, 则数学书恰好排在一起, 外文书也恰好排成一起的排法有\\blank{50}种.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"019141"
],
"remark": "",
"space": "",
"unrelated": []
},
"023330": {
"id": "023330",
"content": "从 $(3 x+1)^5$ 的展开式各项的系数中任取两个, 其和为奇数的概率是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023331": {
"id": "023331",
"content": "已知各顶点都在一个球面上的正三棱柱的高为 $2$, 这个球的体积为 $\\dfrac{20 \\sqrt{5}}{3}\\pi$, 则这个正三棱柱的体积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023332": {
"id": "023332",
"content": "如果两个球的表面积之比为 $4: 9$, 那么这两个球的体积之比为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"013381"
],
"remark": "",
"space": "",
"unrelated": []
},
"023333": {
"id": "023333",
"content": "正方体的 $6$ 个面无限延展后把空间分成\\blank{50}个部分.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023334": {
"id": "023334",
"content": "某电池厂有 $A, B$ 两条生产线, 现从 $A$ 生产线中取出产品 $8$ 件, 测得它们的可充电次数的平均值为 $210$ , 方差为 $4$ ; 从 $B$ 生产线中取出产品 $12$ 件, 测得它们的可充电次数的平均值为 $200$ , 方差为 $4$ . 则 $20$ 件产品组成的总样本的方差为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023335": {
"id": "023335",
"content": "甲、乙两人组成``星队''参加猜谜活动, 每轮活动由甲、乙各猜一个, 已知甲每轮猜对的概率为 $\\dfrac{3}{4}$, 乙每轮猜对的概率为 $\\dfrac{2}{3}$. 在每轮活动中, 甲和乙猜对与否互不影响, 各轮结果也互不影响, 则``星队''在两轮活动中猜对 $3$ 个的概率为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023336": {
"id": "023336",
"content": "在一个棱长为 $6 \\mathrm{cm}$ 的密封正方体盒子中, 放一个半径为 $1 \\mathrm{cm}$ 的小球, 无论怎样摇动盒子, 小球在盒子中不能达到的空间体积是\\blank{50} $\\mathrm{cm}^3$.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023337": {
"id": "023337",
"content": "在由正整数构成的无穷数列 $\\{a_n\\}$ 中, 对任意的正整数, 都有 $a_n \\leq a_{n+1}$ 且对任意的整数 $k$,数列 $\\{a_n\\}$ 中恰有 $k$ 个 $k$, 则 $a_{2023}=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"012992"
],
"remark": "",
"space": "",
"unrelated": []
},
"023338": {
"id": "023338",
"content": "棱长为 $1$ 的正方体 $ABCD-A_1B_1C_1D_1$, 点 $P$ 沿正方形 $ABCD$ 按 $ABCDA$ 的方向做匀速运动, 点 $Q$ 沿正方形 $B_1C_1CB$ 按 $B_1C_1CBB_1$ 的方向以同样的速度做匀速运动, 且点 $P$ 、 $Q$ 分别从点 $A$ 与点 $B_1$ 同时出发, 则 $PQ$ 的中点的轨迹所围成图形的面积大小是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023339": {
"id": "023339",
"content": "若干个能确定一个立体图形的体积的量称为该立体图形的``基本量'', 已知长方体 $ABCD-A_1B_1C_1D_1$ , 下列四组量中, 不能作为该长方体的``基本量''的是\\bracket{20}.\n\\twoch{$AB$、$AD$、$AA_1$ 的长度}{$AB_1$、$AC$、$AD_1$ 的长度}{$AB$、$BA_1$、$BD_1$ 的长度}{$AB$、$AC_1$、$B_1C$ 的长度}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [
"017458"
],
"remark": "",
"space": "",
"unrelated": []
},
"023340": {
"id": "023340",
"content": "从某中学甲、乙两班各随机抽取 $10$ 名同学, 测量他们的身高 (单位: $\\mathrm{cm}$), 所得数据用茎叶图表示如下, 由此可估计甲、乙两班同学的身高情况, 则下列结论正确的是\\bracket{20}.\n\\begin{center}\n\\begin{tabular}{ccc|c|ccccc}\n\\multicolumn{3}{r|}{甲班} & & \\multicolumn{5}{l}{乙班} \\\\\n\\hline\n& 2 & 1 & 18 & 2 \\\\\n8 & 2 & 0 & 17 & 1 & 2 & 6 & 8 & 9 \\\\\n6 & 5 & 3 & 16 & 2 & 4 & 7 \\\\\n& 8 & 7 & 15 & 9\n\\end{tabular}\n\\end{center}\n\\twoch{甲乙两班同学身高的极差不相等}{甲班同学身高的平均值较大}{甲班同学的身高的中位数较大}{甲班同学身高在 $175 \\mathrm{cm}$ 以上的人数较多}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023341": {
"id": "023341",
"content": "如图, 样本 $A$ 和 $B$ 分别取自两个不同的总体, 它们的平均数分别为 $\\overline{x_A}$ 和 $\\overline{x_B}$, 标准差分别为 $s_A$ 和 $s_B$, 则 \\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, xscale = {3/7}, yscale = {3/17.5}]\n\\draw [->] (0,0) -- (7,0) node [below] {$n$};\n\\draw [->] (0,0) -- (0,17.5) node [left] {$x_n$};\n\\draw (0,0) node [below left] {$O$};\n\\foreach \\i in {1,2,...,6}\n{\\draw [dashed] (\\i,0) node [below] {$\\i$} -- (\\i,17.5);};\n\\foreach \\i in {2.5,5,7.5,10,12.5,15,17.5}\n{\\draw [dashed] (0,\\i) --++ (7,0);};\n\\draw [dashed] (7,0) -- (7,17.5);\n\\foreach \\i in {5,10,15}\n{\\draw (0,\\i) node [left] {$\\i$};};\n\\draw (4.5,16.25) node {$A$};\n\\draw [dashed] (1,2.5) -- (2,10) -- (3,5) -- (4,7.5) -- (5,2.5) -- (6,10);\n\\foreach \\i in {(1,2.5),(2,10),(3,5),(4,7.5),(5,2.5),(6,10)}\n{\\filldraw \\i circle (0.14 and 0.35);};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex, xscale = {3/7}, yscale = {3/17.5}]\n\\draw [->] (0,0) -- (7,0) node [below] {$n$};\n\\draw [->] (0,0) -- (0,17.5) node [left] {$x_n$};\n\\draw (0,0) node [below left] {$O$};\n\\foreach \\i in {1,2,...,6}\n{\\draw [dashed] (\\i,0) node [below] {$\\i$} -- (\\i,17.5);};\n\\foreach \\i in {2.5,5,7.5,10,12.5,15,17.5}\n{\\draw [dashed] (0,\\i) --++ (7,0);};\n\\draw [dashed] (7,0) -- (7,17.5);\n\\foreach \\i in {5,10,15}\n{\\draw (0,\\i) node [left] {$\\i$};};\n\\draw (4.5,16.25) node {$B$};\n\\draw [dashed] (1,15) -- (2,10) -- (3,12.5) -- (4,10) -- (5,12.5) -- (6,10);\n\\foreach \\i in {(1,15),(2,10),(3,12.5),(4,10),(5,12.5),(6,10)}\n{\\filldraw \\i circle (0.14 and 0.35);};\n\\end{tikzpicture}\n\\end{center}\n\\fourch{$\\overline{x_A}>\\overline{x_B}$, $s_A>s_B$}{$\\overline{x_A}<\\overline{x_B}$, $s_A>s_B$}{$\\overline{x_A}>\\overline{x_B}$, $s_A<s_B$}{$\\overline{x_A}<\\overline{x_B}$, $s_A<s_B$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023342": {
"id": "023342",
"content": "``杨辉三角''是中国古代数学文化的瑰宝之一, 它揭示了二项式展开式中的组合数在三角形数表中的一种几何排列规律, 如图所示, 则下列关于``杨辉三角''的结论正确的是\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,xscale = 0.3, yscale = 0.5]\n\\foreach \\i in {0,1,...,8}\n{\\draw (-12,{-\\i}) node {第$\\i$行};};\n\\draw (-12,-9) node {$\\cdots$};\n\\draw (0,0) node {$1$};\n\\draw (-1,-1) node {$1$} (1,-1) node {$1$};\n\\draw (-2,-2) node {$1$} (0,-2) node {$2$} (2,-2) node {$1$};\n\\foreach \\i/\\j in {0/1,1/3,2/3,3/1}\n{\\draw ({2*\\i-3},-3) node {$\\j$};};\n\\foreach \\i/\\j in {0/1,1/4,2/6,3/4,4/1}\n{\\draw ({2*\\i-4},-4) node {$\\j$};};\n\\foreach \\i/\\j in {0/1,1/5,2/10,3/10,4/5,5/1}\n{\\draw ({2*\\i-5},-5) node {$\\j$};};\n\\foreach \\i/\\j in {0/1,1/6,2/15,3/20,4/15,5/6,6/1}\n{\\draw ({2*\\i-6},-6) node {$\\j$};};\n\\foreach \\i/\\j in {0/1,1/7,2/21,3/35,4/35,5/21,6/7,7/1}\n{\\draw ({2*\\i-7},-7) node {$\\j$};};\n\\foreach \\i/\\j in {0/1,1/8,2/28,3/56,4/70,5/56,6/28,7/8,8/1}\n{\\draw ({2*\\i-8},-8) node {$\\j$};};\n\\draw (0,-9) node {$\\cdots$};\n\\draw (0,1) node {杨辉三角};\n\\end{tikzpicture}\n\\end{center}\n\\onech{$\\mathrm{C}_3^2+\\mathrm{C}_4^2+\\mathrm{C}_5^2+\\cdots+\\mathrm{C}_{10}^2=165$}{在第 2022 行中第 1011 个数最大}{第 6 行的第 7 个数、第 7 行的第 7 个数及第 8 行的第 7 个数之和等于第 9 行的第 8 个数}{第 34 行中第 15 个数与第 16 个数之比为 $2: 3$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023343": {
"id": "023343",
"content": "一个质地均匀的正四面体木块的四个面上分别标有数字 $1$、$2$、$3$、$4$. 连续抛掷这个正四面体木块两次, 并记录每次正四面体木块朝下的面上的数字, 记事件 $A$ 为``第一次向下的数字为 2 或 3'', 事件 $B$ 为``两次向下的数字之和为奇数'', 则下列结论正确的是\\bracket{20}.\n\\twoch{$P(A)=\\dfrac{1}{4}$}{事件 $A$ 与事件 $B$ 互斥}{事件 $A$ 与事件 $B$ 互相独立}{$P(A \\cup B)=\\dfrac{1}{2}$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023344": {
"id": "023344",
"content": "如图, 三棱柱 $ABC-A_1B_1C_1$ 满足棱长都相等, 且 $AA_1 \\perp$ 平面 $ABC$, $D$ 是棱 $CC_1$ 的中点, $E$ 是棱 $AA_1$ 上的动点, 设 $AE=x$, 随着 $x$ 的增大, 平面 $BDE$ 与底面 $ABC$ 所成锐二面角的平面角是\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\def\\h{2}\n\\draw ({-\\l/2},0,0) node [left] {$A$} coordinate (A);\n\\draw (0,0,{\\l/2*sqrt(3)}) node [below] {$B$} coordinate (B);\n\\draw ({\\l/2},0,0) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,\\h) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,\\h) node [below right] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\h) node [right] {$C_1$} coordinate (C_1);\n\\draw (A) -- (B) -- (C) (A) -- (A_1) (B) -- (B_1) (C) -- (C_1) (A_1) -- (B_1) -- (C_1) (A_1) -- (C_1);\n\\draw [dashed] (A) -- (C);\n\\draw ($(C)!0.5!(C_1)$) node [right] {$D$} coordinate (D);\n\\draw ($(A)!0.3!(A_1)$) node [left] {$E$} coordinate (E);\n\\draw (E)--(B)--(D);\n\\draw [dashed] (E)--(D);\n\\end{tikzpicture}\n\\end{center}\n\\fourch{先增大再减小}{减小}{增大}{先减小再增大}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023345": {
"id": "023345",
"content": "抛掷一颗均匀的骰子, 设事件 $A$ 表示``点数为奇数'', 事件 $B$ 表示``点数不超过 2''.\\\\\n(1) 求 $P(A \\cup B)$\\\\\n(2) 再抛掷一次骰子, 设事件 $C$ 表示``两次点数的差的绝对值不小于 4'', 求 $P(C)$.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023346": {
"id": "023346",
"content": "若 $(1-x-2 x^2)^5=a_0+a_1 x+a_2 x^2+\\cdots+a_{10}x^{10}$.\\\\\n(1) 求 $a_0+a_1+a_2+\\cdots+a_{10}$ 的值.\\\\\n(2) 求 $a_2+a_4+a_6+a_8+a_{10}$ 的值.\\\\\n(3) 求 $a_1$ 的值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023347": {
"id": "023347",
"content": "某高校承办了奥运会的志愿者选拔面试工作, 现随机抽取了 100 名候选者的面试成绩并分成五组: 第一组 $[45,55)$ , 第二组 $[55,65)$ , 第三组 $[65,75)$ , 第四组 $[75,85)$ , 第五组 $[85,95) , $ 绘制成如图所示的频率分布直方图, 已知第三、四、五组的频率之和为 $0.7$, 第一组和第五组的频率相同.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, xscale = 0.05, yscale = 60]\n\\draw [->] (35,0) -- (38,0) -- (39,0.003) -- (41,-0.003) -- (42,0)-- (105,0) node [below] {分数};\n\\draw [->] (35,0) -- (35,0.06) node [left] {$\\dfrac{\\text{频率}}{\\text{组距}}$};\n\\draw (35,0) node [below left] {$O$};\n\\foreach \\i/\\j in {45/0.005,55/0.025,65/0.045,75/0.020,85/0.005}\n{\\draw (\\i,0) node [below] {$\\i$} --++ (0,\\j) --++ (10,0) --++ (0,-\\j);};\n\\foreach \\i/\\j/\\k in {55/0.025/b,65/0.045,75/0.020,85/0.005/a}\n{\\draw [dashed] (\\i,\\j) -- (35,\\j) node [left] {$\\k$};};\n\\draw (95,0) node [below] {$95$};\n\\end{tikzpicture}\n\\end{center}\n(1) 求 $a, b$ 的值;\\\\\n(2) 估计这个 100 名候选者面试成绩的平均数和第 60 百分位数 (精确到 $0.1$);\\\\\n(3) 在第四、五两组志愿者中, 按比例分层抽样抽取 5 人, 然后再从这 5 人中选出 2 人, 求选出的两人来自同一组的概率.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023348": {
"id": "023348",
"content": "将一个边长为 $2$ 的正六边形 $ABCDEF$ (图 1) 沿 $CF$ 对折, 形成如图 2 所示的五面体, 其中, 底面 $ABDE$ 是正方形.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\foreach \\i/\\j/\\k in {-120/A/below left,-60/B/below right,0/C/right,60/D/above right,120/E/above left,180/F/left}\n{\\draw (\\i:1) node [\\k] {$\\j$} coordinate (\\j);};\n\\draw (A)--(B)--(C)--(D)--(E)--(F)--cycle;\n\\draw ($(A)!0.5!(B)$) ++ (0,-0.7) node {图1};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw (-0.5,0,0.5) node [below left] {$A$} coordinate (A);\n\\draw (0.5,0,0.5) node [below right] {$B$} coordinate (B);\n\\draw (-0.5,0,-0.5) node [above] {$E$} coordinate (E);\n\\draw (0.5,0,-0.5) node [right] {$D$} coordinate (D);\n\\draw (-1,{sqrt(2)/2},0) node [left] {$F$} coordinate (F);\n\\draw (F) ++ (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (F)--(A)--(B)--(C)--cycle(C)--(D)--(B);\n\\draw [dashed] (F)--(E)--(D)(E)--(A);\n\\draw ($(A)!0.5!(B)$) ++ (0,-0.7) node {图2};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw (-0.5,0,0.5) node [below left] {$A$} coordinate (A);\n\\draw (0.5,0,0.5) node [below right] {$B$} coordinate (B);\n\\draw (-0.5,0,-0.5) node [above] {$E$} coordinate (E);\n\\draw (0.5,0,-0.5) node [right] {$D$} coordinate (D);\n\\draw (-1,{sqrt(2)/2},0) node [left] {$F$} coordinate (F);\n\\draw (F) ++ (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (F)--(A)--(B)--(C)--cycle(C)--(D)--(B);\n\\draw [dashed] (F)--(E)--(D)(E)--(A);\n\\draw ($(E)!0.5!(D)$) node [above] {$H$} coordinate (H);\n\\draw ($(A)!0.3!(B)$) node [below] {$G$} coordinate (G);\n\\draw (F)--(G);\n\\draw [dashed] (G)--(H)--(F);\n\\draw ($(A)!0.5!(B)$) ++ (0,-0.7) node {图3};\n\\end{tikzpicture}\n\\end{center}\n(1) 求二面角 $A-FC-D$ 的大小;\\\\\n(2) 如图 3, 点 $G$、$H$ 分别为棱 $AB$、$ED$ 上的动点, 求 $\\Delta FGH$ 周长的最大值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023349": {
"id": "023349",
"content": "设 $S_n$ 是等差数列 $\\{a_n\\}$ 的前 $n$ 项和, 数列 $\\{b_n\\}$ 满足 $b_n=n-(-1)^n S_n$, $a_1+b_1=3$, $a_2-b_2=5$.\\\\\n(1) 求数列 $\\{b_n\\}$ 的通项公式;\\\\\n(2) 设数列 $\\{b_n\\}$ 的前 $n$ 项和为 $T_n$,\\\\\n\\textcircled{1} 求 $T_{10}$ ; \\\\\n\\textcircled{2} 若集合 $A=\\{n | n \\leq 100$ 且 $T_n \\leq 100$, $n \\in \\mathbb{N}, n \\geq 1\\}$ , 求集合 $A$ 中所有元素的和.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023350": {
"id": "023350",
"content": "从 $1$、$2$、$3$、$\\cdots$、$99$ 这 $99$ 个自然数中, 每次任取 $5$ 个不同的数, 若 $5$ 个数能成等差数列, 则这样的等差数列共有\\blank{50}个.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023351": {
"id": "023351",
"content": "化简: $1\\mathrm{C}_{100}^1+2\\mathrm{C}_{100}^2+3\\mathrm{C}_{100}^3+\\cdots+50\\mathrm{C}_{100}^{50}=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023352": {
"id": "023352",
"content": "已知三棱锥 $P-ABC$ 的顶点 $P$ 在底面的射影 $O$ 与 $\\triangle ABC$ 的垂心重合, 且 $\\dfrac{S_{\\triangle ABC}}{S_{\\triangle PBC}}=\\dfrac{S_{\\triangle PBC}}{S_{\\triangle OBC}}$ , 若三棱锥 $P-ABC$ 的外接球半径为 $3$ , 则 $S_{\\triangle PAB}+S_{\\triangle PBC}+S_{\\triangle PCA}$ 的最大值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023353": {
"id": "023353",
"content": "等差数列 $\\{a_n\\}$ 的通项公式是 $a_n=3 n-1$ , 等比数列 $\\{b_n\\}$ 满足 $b_1=a_p$, $b_2=a_q$, 其中 $q>p>1$, 且 $n, p, q$ 均为正整数. 有关数列 $\\{b_n\\}$, 有如下四个命题:\\\\\n\\textcircled{1} 存在 $p, q$, 使得数列 $\\{b_n\\}$ 的所有项均在数列 $\\{a_n\\}$ 中; \\\\\n\\textcircled{2} 存在 $p, q$ , 使得数列 $\\{b_n\\}$ 仅有有限项(至少 $1$ 项)不在数列 $\\{a_n\\}$ 中; \\\\\n\\textcircled{3} 存在 $p, q$, 使得数列 $\\{b_n\\}$ 的某一项的值为 $2023$;\\\\\n\\textcircled{4} 存在 $p, q$, 使得数列 $\\{b_n\\}$ 的前若干项的和为 $2023$.\\\\\n其中正确的命题个数是\\bracket{20}个.\n\\fourch{0}{1}{2}{3}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023354": {
"id": "023354",
"content": "已知正方体 $ABCD-A_1B_1C_1D_1$ 中, $AB=6$, 点 $P$ 在平面 $AB_1D_1$ 内, $A_1P=3 \\sqrt{2}$, 求点 $P$ 到 $BC_1$ 距离的最小值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023355": {
"id": "023355",
"content": "有一种投掷骰子走跳棋的游戏: 棋盘上标有第 1 站、第 2 站、第 3 站、... 第 10 站,共 10 站, 设棋子跳到第 $n$ 站的概率为 $p_n$ , 若一枚棋子开始在第 1 站, 棋手每次投掷骰子一次, 棋子向前跳动一次, 若骰子点数小于等于 $3$ , 棋子向前跳一站; 否则, 棋子向前跳两站, 直到棋子跳到第 9 站(失败)或者第 10 站(获胜)时, 游戏结束, 求该棋手获胜的概率.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240107\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": {
"id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",