黄浦一模单元分类完成

This commit is contained in:
weiye.wang 2023-04-19 21:04:45 +08:00
parent cb57be7963
commit 6bdea2213f
6 changed files with 135 additions and 76 deletions

View File

@ -2,7 +2,7 @@ import os,re,json
"""---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---"""
keywords_dict_table = [
{"origin":[r""],"origin2":[r"2023"],"origin3":[r"徐汇"]}
{"origin":[r""],"origin2":[r"2023"]}
]
"""---关键字设置完毕---"""
# 示例: keywords_dict_table = [

View File

@ -11,7 +11,7 @@ answered = True
#目录和文件的分隔务必用/
directory = "临时文件/"
# filename = "高三二模前易错题"
filename = "2023届高三二模试卷"
filename = "2023届高三二模试卷16区"
"""---设置文件名结束---"""
"""---设置题目列表---"""

View File

@ -1,71 +1,87 @@
ans
tags
15290
$(-\infty,3)$
14511
第二单元
15291
$-\dfrac 45$
15292
$158$
14512
第一单元
15293
$[1,+\infty)$
15294
$10$
14513
第八单元
15295
$1$
15296
$\dfrac{2\sqrt{2}}3\pi$
14514
第六单元
15297
$-3$
15298
$\dfrac{\sqrt{3}}2$
14515
第五单元
15299
$\dfrac 29$
15300
$(-\infty,1)$
14516
第九单元
15301
$10$
15302
B
14517
第三单元
15303
B
15304
C
14518
第六单元
15305
D
15306
(1) $2\times 2$列联表为
\begin{tabular}{|c|c|c|c|}
\hline
& 年龄在$50$周岁以上(含$50$周岁) & 年龄在$50$周岁以下 & 总计\\\hline
支持态度人数 & $60$ & $180$ & $240$ \\\hline
不支持态度人数 & $30$ & $30$ & $60$ \\\hline
总计 & $90$ & $210$ & $300$ \\ \hline
\end{tabular}. $\chi^2\approx 14.3>3.841$, 有$95\%$的把握认为年龄与所持态度具有相关性; (2) $X\sim \begin{pmatrix}0 & 1 & 2 & 3 & 4 \\ \dfrac 1{81} & \dfrac 8{81} & \dfrac {24}{81} & \dfrac {32}{81} & \dfrac {16}{81}\end{pmatrix}$, $E[X]=\dfrac 83$
14519
第三单元
15307
(1) $-\dfrac\pi 2$或$\dfrac \pi 6$; (2) $1+\dfrac{\sqrt{3}}2$
15308
(1) $60^\circ$; (2) $\lambda = \dfrac 32$
14520
第八单元
14521
第五单元
14522
第七单元
14523
第七单元
14524
第六单元
14525
第三单元
14526
第一单元
14527
第四单元
14528
第六单元
14529
第三单元
第二单元
14530
第七单元
14531
第二单元
15309
(1) $2+2\sqrt{2}$; (2) $\lambda+\mu=3$, 证明略; (3) $k=\pm \dfrac 12$, 面积的最大值为$1$
15310
(1) 是$L(2)$函数, 理由略; (2) $(\dfrac 12,\dfrac 34]$; (3) $a$的取值范围为$(0,\dfrac 1{10}]$, $M(a)=0.1-\dfrac 12a$

View File

@ -1 +1 @@
015290:015310
012287:012328,012487:012738,012760:012780,014511:014531

View File

@ -7,13 +7,13 @@ import os,re,time,json,sys
"""---设置题目列表---"""
#留空为编译全题库, a为读取文本文件中的题号筛选.txt文件生成题库
problems = r"""
a
14511:14531
"""
"""---设置题目列表结束---"""
"""---设置文件名---"""
#目录和文件的分隔务必用/
filename = "临时文件/高一区统考"
filename = "临时文件/临时"
"""---设置文件名结束---"""
"""---设置是否需要解答题的空格---"""

View File

@ -360109,7 +360109,9 @@
"id": "014511",
"content": "函数$y=\\lg (2-x)$的定义域为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "$(-\\infty,2)$",
"solution": "",
@ -360138,7 +360140,9 @@
"id": "014512",
"content": "已知集合$A=(-2,2)$, $B=(-3,-1) \\cup(1,5)$, 则$A \\cup B=$\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第一单元"
],
"genre": "填空题",
"ans": "$(-3,5)$",
"solution": "",
@ -360167,7 +360171,9 @@
"id": "014513",
"content": "$(2 x+1)^5$的二项展开式中$x^3$项的系数是\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第八单元"
],
"genre": "填空题",
"ans": "$80$",
"solution": "",
@ -360196,7 +360202,9 @@
"id": "014514",
"content": "已知向量$\\overrightarrow {a}=(-m, 1,3)$, $\\overrightarrow {b}=(2, n, 1)$, 若$\\overrightarrow {a}\\parallel \\overrightarrow {b}$, 则$m n$的值为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "填空题",
"ans": "$-2$",
"solution": "",
@ -360225,7 +360233,9 @@
"id": "014515",
"content": "已知复数$z$满足$(1+\\mathrm{i}) z=4-2 \\mathrm{i}$($\\mathrm{i}$为虚数单位), 则复数$z$的模等于\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "$\\sqrt{10}$",
"solution": "",
@ -360254,7 +360264,9 @@
"id": "014516",
"content": "某个品种的小麦麦穗长度(单位: $\\text{cm}$)的样本数据如下: $10.2$、$9.7$、$10.8$、$9.1$、$8.9$、$8.6$、$9.8$、$9.6$、$9.9$、$11.2$、$10.6$、$11.7$, 则这组数据的第$80$百分数为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第九单元"
],
"genre": "填空题",
"ans": "$10.8$",
"solution": "",
@ -360283,7 +360295,9 @@
"id": "014517",
"content": "在平面直角坐标系$xOy$中, 若角$\\theta$的顶点为坐标原点, 始边与$x$轴的非负半轴重合, 终边与以点$O$为圆心的单位圆交于点$P(-\\dfrac{3}{5}, \\dfrac{4}{5})$, 则$\\sin (2 \\theta-\\dfrac{\\pi}{2})$的值为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "$\\dfrac{7}{25}$",
"solution": "",
@ -360312,7 +360326,9 @@
"id": "014518",
"content": "已知一个圆锥的侧面展开图是一个面积为$2 \\pi$的半圆, 则该圆锥的体积为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "填空题",
"ans": "$\\dfrac{\\sqrt{3}}3\\pi$",
"solution": "",
@ -360341,7 +360357,9 @@
"id": "014519",
"content": "已知$\\triangle ABC$的三边长分别为$4$、$5$、$7$, 记$\\triangle ABC$的三个内角的正切值所组成的集合为$M$, 则集合$M$中的最大元素为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "$\\dfrac{2\\sqrt{6}}5$",
"solution": "",
@ -360370,7 +360388,9 @@
"id": "014520",
"content": "现有$5$人参加抽奖活动, 每人依次从装有$5$张奖票(其中$3$张为中奖票)的箱子中不放回地随机抽取一张, 直到$3$张中奖票都被抽出时活动结束, 则活动恰好在第$4$人抽完后结束的概率为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第八单元"
],
"genre": "填空题",
"ans": "$\\dfrac{3}{10}$",
"solution": "",
@ -360399,7 +360419,9 @@
"id": "014521",
"content": "已知四边形$ABCD$是平行四边形, 若$\\overrightarrow{AD}=2\\overrightarrow{DE}$, $\\overrightarrow{BF}\\parallel \\overrightarrow{BE}$, $\\overrightarrow{AF} \\cdot \\overrightarrow{BE}=0$, \n且$\\overrightarrow{AF} \\cdot \\overrightarrow{AC}=60$, 则$\\overrightarrow{AC}$在$\\overrightarrow{AF}$上的数量投影为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "$10$",
"solution": "",
@ -360428,7 +360450,9 @@
"id": "014522",
"content": "已知曲线$C_1: y=\\sqrt{1-x^2}$与曲线$C_2: y=\\sqrt{2-x^2}$, 长度为$1$的线段$AB$的两端点$A$、$B$分别在曲线$C_1$、$C_2$上沿顺时针方向运动, 若点$A$从点$(-1,0)$开始运动, 点$B$到达点$(\\sqrt{2}, 0)$时停止运动, 则线段$AB$所扫过的区域的面积为\\blank{50}.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "$\\dfrac{3\\pi}{8}$",
"solution": "",
@ -360457,7 +360481,9 @@
"id": "014523",
"content": "在平面直角坐标系$xOy$中, ``$m<0$''是``方程$x^2+m y^2=1$表示的曲线是双曲线''的\\bracket{20}条件.\n\\fourch{充分不必要}{必要不充分}{充要}{既不充分也不必要}",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "选择题",
"ans": "C",
"solution": "",
@ -360486,7 +360512,9 @@
"id": "014524",
"content": "如图, 四边形$ABCD$是边长为$1$的正方形, $MD \\perp$平面$ABCD$, $NB \\perp$平面$ABCD$, 且$MD=NB=1$, 点$G$为$MC$的中点. 则下列结论中不正确的是\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 2,z = {(240:0.5cm)}]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,0) node [right] {$B$} coordinate (B);\n\\draw (1,0,-1) node [right] {$C$} coordinate (C);\n\\draw (0,0,-1) node [above right] {$D$} coordinate (D);\n\\draw (B)++(0,1,0) node [above right] {$N$} coordinate (N);\n\\draw (D)++(0,1,0) node [above] {$M$} coordinate (M);\n\\draw ($(C)!0.5!(M)$) node [below left] {$G$} coordinate (G);\n\\draw (A)--(B)--(C)--(N)--(M)--cycle(A)--(N)--(B);\n\\draw [dashed] (A)--(D)--(C)(D)--(M)--(C)(B)--(G);\n\\end{tikzpicture}\n\\end{center}\n\\twoch{$MC \\perp AN$}{平面$DCM\\parallel$平面$ABN$}{直线$GB$与$AM$是异面直线}{直线$GB$与平面$AMD$无公共点}",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "选择题",
"ans": "D",
"solution": "",
@ -360515,7 +360543,9 @@
"id": "014525",
"content": "已知$f(x)=\\sin (\\omega x+\\dfrac{\\pi}{6})(\\omega>0)$, 且函数$y=f(x)$恰有两个极大值点在$[0, \\dfrac{\\pi}{3}]$内, 则$\\omega$的取值范围是\\bracket{20}.\n\\fourch{$(7,13]$}{$[7,13)$}{$(7,10]$}{$[7,10)$}",
"objs": [],
"tags": [],
"tags": [
"第三单元"
],
"genre": "选择题",
"ans": "B",
"solution": "",
@ -360544,7 +360574,9 @@
"id": "014526",
"content": "设$a$、$b$、$c$、$p$为实数, 若同时满足不等式$a x^2+b x+c>0$、$b x^2+c x+a>0$与$c x^2+a x+b>0$的全体实数$x$所组成的集合等于$(p,+\\infty)$. 则关于结论: \\textcircled{1} $a$、$b$、$c$至少有一个为$0$; \\textcircled{2} $p=0$. 下列判断中正确的是\\bracket{20}.\n\\fourch{\\textcircled{1}和\\textcircled{2}都正确}{\\textcircled{1}和\\textcircled{2}都错误}{\\textcircled{1}正确, \\textcircled{2}错误}{\\textcircled{1}错误, \\textcircled{2}正确}",
"objs": [],
"tags": [],
"tags": [
"第一单元"
],
"genre": "选择题",
"ans": "A",
"solution": "",
@ -360573,7 +360605,9 @@
"id": "014527",
"content": "已知$\\{a_n\\}$是等差数列, $\\{b_n\\}$是等比数列, 且$b_2=3$, $b_3=9$, $a_1=b_1$, $a_{14}=b_4$.\\\\\n(1) 求$\\{a_n\\}$的通项公式;\\\\\n(2) 设$c_n=a_n+(-1)^n b_n$($n \\in \\mathbf{N}$, $n\\ge 1$), 求数列$\\{c_n\\}$的前$2 n$项和.",
"objs": [],
"tags": [],
"tags": [
"第四单元"
],
"genre": "解答题",
"ans": "(1) $2n-1$; (2) $4n^2+\\dfrac{9^n}{4}-\\dfrac 14$",
"solution": "",
@ -360602,7 +360636,9 @@
"id": "014528",
"content": "如图所示, 四棱锥$P-ABCD$中, 底面$ABCD$为菱形, 且$PA \\perp$平面$ABCD$, 又棱$PA=AB=2, E$为棱$CD$的中点, $\\angle ABC=60^{\\circ}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [above left] {$A$} coordinate (A);\n\\draw (2,0,0) node [right] {$D$} coordinate (D);\n\\draw (1,0,{sqrt(3)}) node [below] {$C$} coordinate (C);\n\\draw (C)++(-2,0,0) node [below] {$B$} coordinate (B);\n\\draw ($(C)!0.5!(D)$) node [below right] {$E$} coordinate (E);\n\\draw (A)++(0,2,0) node [above] {$P$} coordinate (P);\n\\draw (P)--(B)--(C)--(D)--cycle(P)--(C);\n\\draw [dashed] (B)--(A)--(D)(A)--(E)(A)--(P);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: 直线$AE \\perp$平面$PAB$;\\\\\n(2) 求直线$AE$与平面$PCD$所成角的正切值.",
"objs": [],
"tags": [],
"tags": [
"第六单元"
],
"genre": "解答题",
"ans": "(1) 证明略; (2) $\\dfrac{2\\sqrt{3}}3$",
"solution": "",
@ -360631,7 +360667,10 @@
"id": "014529",
"content": "某展览会有四个展馆, 分别位于矩形$ABCD$的四个顶点$A$、$B$、$C$、$D$处, 现要修建如图中实线所示的步道(宽度忽略不计, 长度可变)把这四个展馆连在一起, 其中$AB=8$百米, $AD=6$百米, 且$AE=DE=BF=CF$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below] {$A$} coordinate (A);\n\\draw (4,0) node [below] {$B$} coordinate (B);\n\\draw (4,3) node [above] {$C$} coordinate (C);\n\\draw (0,3) node [above] {$D$} coordinate (D);\n\\draw [dashed] (A)--(B) node [midway,below] {$8$} -- (C)--(D)--cycle node [midway, left] {$6$};\n\\draw (0.8,1.5) node [below right] {$E$} coordinate (E);\n\\draw (3.2,1.5) node [below left] {$F$} coordinate (F);\n\\draw (A)--(E)--(D)(B)--(F)--(C)(E)--(F);\n\\end{tikzpicture}\n\\end{center}\n(1) 试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量$x$, 并求出步道的总长$y$(单位: 百米)关于$x$的函数关系式;\\\\\n(2) 求步道的最短总长度(精确到$0.01$百米).",
"objs": [],
"tags": [],
"tags": [
"第三单元",
"第二单元"
],
"genre": "解答题",
"ans": "(1) 如设$AE=x$百米, 则$y=4x+8-2\\sqrt{x^2-9}$($3<x<5$); 如设$\\angle MAE=x$, 则$y=\\dfrac{12}{\\cos x}+8-6\\tan x$($0<x<\\arctan\\dfrac 43$)等; (2) 约$18.39$百米",
"solution": "",
@ -360660,7 +360699,9 @@
"id": "014530",
"content": "已知椭圆$C: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$)的离心率为$\\dfrac{\\sqrt{2}}{2}$, 以其四个顶点为顶点的四边形的面积等于$8 \\sqrt{2}$. 动直线$l_1$、$l_2$都过点$M(0, m)$($0<m<1$), 斜率分别为$k$、$-3k$, $l_1$与椭圆$C$交于点$A$、$P$, $l_2$与椭圆$C$交于点$B$、$Q$, 点$P$、$Q$分别在第一、四象限且$PQ \\perp x$轴.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.7]\n\\draw [->] (-3.5,0) -- (3.5,0) node [below] {$x$};\n\\draw [->] (0,-3) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\path [draw, name path = elli] (0,0) ellipse ({2*sqrt(2)} and 2);\n\\path [name path = PQ] (1.5,-2) -- (1.5,2);\n\\path [name intersections = {of = elli and PQ, by = {P,Q}}];\n\\draw (P) node [above] {$P$} --(Q) node [below] {$Q$};\n\\draw ($(P)!0.25!(Q)$) ++ (-1.5,0) node [left] {$M$} coordinate (M);\n\\path [name path = AP] (M)--($(P)!3!(M)$);\n\\path [name path = BQ] (M)--($(Q)!1.5!(M)$);\n\\path [name intersections = {of = AP and elli, by = A}];\n\\path [name intersections = {of = BQ and elli, by = B}];\n\\draw (A) node [left] {$A$} --(B) node [above] {$B$}(A)--(P)(B)--(Q);\n\\end{tikzpicture}\n\\end{center}\n(1) 求椭圆$C$的标准方程;\\\\\n(2) 若直线$l_1$与$x$轴交于点$N$, 求证: $|NP|=2|NM|$;\\\\\n(3) 求直线$AB$的斜率的最小值, 并求直线$AB$的斜率取最小值时的直线$l_1$的方程.",
"objs": [],
"tags": [],
"tags": [
"第七单元"
],
"genre": "解答题",
"ans": "(1) $\\dfrac{x^2}8+\\dfrac{y^2}4=1$; (2) 证明略; (3) 斜率的最小值为$\\dfrac{\\sqrt{6}}2$, 此时直线$l_1$的方程为$y=\\dfrac{\\sqrt{6}}6x+\\dfrac{2\\sqrt{7}}7$",
"solution": "",
@ -360689,7 +360730,9 @@
"id": "014531",
"content": "已知集合$A$和定义域为$\\mathbf{R}$的函数$y=f(x)$, 若对任意$t \\in A, x \\in \\mathbf{R}$, 都有$f(x+t)-f(x) \\in A$, 则称$f(x)$是关于$A$的同变函数.\\\\\n(1) 当$A=(0,+\\infty)$与$(0,1)$时, 分别判断$f(x)=2^x$是否为关于$A$的同变函数, 并说明理由;\\\\\n(2) 若$f(x)$是关于$\\{2\\}$的同变函数, 且当$x \\in[0,2)$时, $f(x)=\\sqrt{2 x}$, 试求$f(x)$在$[2 k, 2 k+2)$($k \\in \\mathbf{Z}$)上的表达式, 并比较$f(x)$与$x+\\dfrac{1}{2}$的大小;\\\\\n(3) 若$n$为正整数, 且$f(x)$是关于$[2^{-n}, 2^{1-n}]$的同变函数, 求证: $f(x)$既是关于$\\{m \\cdot 2^{-n}\\}$($m \\in \\mathbf{Z}$)的同变函数, 也是关于$[0,+\\infty)$的同变函数.",
"objs": [],
"tags": [],
"tags": [
"第二单元"
],
"genre": "解答题",
"ans": "(1) $f(x)=2^x$是关于$(0,+\\infty)$的同变函数, 不是关于$(0,1)$的同变函数; (2) $f(x)=\\sqrt{2(x-2k)}+2k$, 当$x=2k+\\dfrac 12$($k\\in\\mathbf{Z}$)时, $f(x)=x+\\dfrac 12$, 当$x\\ne 2k+\\dfrac 12$($k\\in\\mathbf{Z}$)时, $f(x)<x+\\dfrac 12$; (3) 证明略",
"solution": "",