收录高三寒假作业67新题

This commit is contained in:
wangweiye7840 2024-01-25 14:34:19 +08:00
parent c3268d62bd
commit 72b53d47b7
2 changed files with 93 additions and 2 deletions

View File

@ -199,3 +199,6 @@
20240125-143125 20240125-143125
021294,024128:024129,013757,024130:024132 021294,024128:024129,013757,024130:024132
20240125-143409
031229,024133:024135,016576,024136

View File

@ -299226,7 +299226,9 @@
"20220806\t王伟叶" "20220806\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"024134"
],
"remark": "", "remark": "",
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
@ -570514,7 +570516,9 @@
"20230101\t王伟叶" "20230101\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"024135"
],
"remark": "", "remark": "",
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
@ -649561,6 +649565,90 @@
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
}, },
"024133": {
"id": "024133",
"content": "若 $a>1$, 则双曲线 $\\dfrac{x^2}{a^2}-y^2=1$ 的离心率的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240125\t毛培菁"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"024134": {
"id": "024134",
"content": "若椭圆 $C: \\dfrac{x^2}{2}+y^2=1$, 直线 $l: y=x+3$, 则椭圆 $C$ 上的点到直线 $l$ 距离最大值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240125\t毛培菁"
],
"same": [],
"related": [
"010702"
],
"remark": "",
"space": "",
"unrelated": []
},
"024135": {
"id": "024135",
"content": "椭圆 $\\dfrac{x^2}{9}+\\dfrac{y^2}{4}=1$ 的焦点为 $F_1$、$F_2$, 点 $P$ 为椭圆上一动点, 当 $\\angle F_1PF_2$ 为钝角时, 点 $P$ 的横坐标的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240125\t毛培菁"
],
"same": [],
"related": [
"021201"
],
"remark": "",
"space": "",
"unrelated": []
},
"024136": {
"id": "024136",
"content": "椭圆 $C_1: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$) 的焦点 $F_1$、$F_2$ 是等轴双曲线 $C_2: \\dfrac{x^2}{2}-\\dfrac{y^2}{2}=1$ 的顶点, 若椭圆 $C_1$ 与双曲线 $C_2$ 的一个交点是 $P, \\triangle PF_1F_2$ 的周长为 $4+2 \\sqrt{2}$.\\\\\n(1) 求椭圆 $C_1$ 的标准方程;\\\\\n(2) 点 $M$ 是双曲线 $C_2$ 上任意不同于其顶点的动点, 设直线 $MF_1$、$MF_2$ 的斜率分别为 $k_1$、$k_2$, 求证: $k_1$、$k_2$ 的乘积为定值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240125\t毛培菁"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": { "030001": {
"id": "030001", "id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",