修改23499题面

This commit is contained in:
wangweiye7840 2024-01-29 15:34:46 +08:00
parent 8090133535
commit 7587fad9ed
1 changed files with 3 additions and 2 deletions

View File

@ -640146,7 +640146,7 @@
},
"023499": {
"id": "023499",
"content": "在等差数列 $\\{a_n\\}$ 中, 公差 $d \\neq 0$, $a_kx^2+2 a_{k+1}x+a_{k+2}=0$ ($k$ 为正整数).\\\\\n(1) 求证: 对不同的 $\\mathrm{k}$ 值, 方程都有公共根.\\\\\n(2) 若方程除公共根外的根依次为 $b_1, b_2, b_3, \\cdots, b_k, \\cdots$, 求证: 数列 $\\{\\dfrac{1}{b_k+1}\\}$ 是等差数列.\\\\\n(3) 设$\\{b_n\\}$是(2)中定义的数列. 若 $b_1=2$, 求 $b_{10}$.",
"content": "在等差数列 $\\{a_n\\}$ 中, 公差 $d \\neq 0$, $a_kx^2+2 a_{k+1}x+a_{k+2}=0$ ($k$ 为正整数).\\\\\n(1) 求证: 对不同的 $k$ 值, 方程都有公共根.\\\\\n(2) 若方程除公共根外的根依次为 $b_1, b_2, b_3, \\cdots, b_k, \\cdots$, 求证: 数列 $\\{\\dfrac{1}{b_k+1}\\}$ 是等差数列.\\\\\n(3) 设$\\{b_n\\}$是(2)中定义的数列. 若 $b_1=2$, 求 $b_{10}$.",
"objs": [],
"tags": [
"第四单元",
@ -640159,7 +640159,8 @@
"usages": [],
"origin": "26届寒假作业补充题目",
"edit": [
"20240108\t王伟叶"
"20240108\t王伟叶",
"20240129\t王伟叶"
],
"same": [],
"related": [],