20221117 evening

This commit is contained in:
weiye.wang 2022-11-17 18:13:35 +08:00
parent f3989de613
commit 78a4880f14
3 changed files with 412 additions and 13 deletions

View File

@ -9,9 +9,9 @@
"name": "stdout",
"output_type": "stream",
"text": [
"首个空闲id: 12033 , 直至 020000\n",
"首个空闲id: 12054 , 直至 020000\n",
"首个空闲id: 20227 , 直至 030000\n",
"首个空闲id: 30479 , 直至 999999\n"
"首个空闲id: 30481 , 直至 999999\n"
]
}
],
@ -45,7 +45,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"display_name": "Python 3.8.8 ('base')",
"language": "python",
"name": "python3"
},
@ -59,12 +59,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
"version": "3.8.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
}
}
},

View File

@ -2,15 +2,15 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#修改起始id,出处,文件名\n",
"starting_id = 12033\n",
"origin = \"2023届杨浦区高三基础考\"\n",
"filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\临时工作区\\temp.tex\"\n",
"editor = \"20221110\\t王伟叶\""
"starting_id = 12054\n",
"origin = \"2023届奉贤中学晋元中学高三期中考试\"\n",
"filename = r\"C:\\Users\\Weiye\\Documents\\wwy sync\\临时工作区\\自拟题目4.tex\"\n",
"editor = \"20221117\\t朱敏慧\\t王伟叶\""
]
},
{
@ -101,7 +101,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"display_name": "Python 3.8.8 ('base')",
"language": "python",
"name": "python3"
},
@ -115,12 +115,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
"version": "3.8.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
}
}
},

View File

@ -291542,6 +291542,405 @@
"remark": "",
"space": ""
},
"012054": {
"id": "012054",
"content": "若集合$A=\\{2,a^2-a+1\\}$, $B=\\{3,a+3\\}$, 且$A\\cap B=\\{3\\}$, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题1",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012055": {
"id": "012055",
"content": "若复数$z=(1+m\\mathrm{i})(2-\\mathrm{i})$($\\mathrm{i}$是虚数单位)是纯虚数, 则实数$m$的值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题2",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012056": {
"id": "012056",
"content": "已知全集$U=\\mathbf{R}$, 集合$A=\\{x|\\dfrac{x+1}{x-2}\\le 0\\}$, 则集合$\\overline{A}=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题3",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012057": {
"id": "012057",
"content": "已知$\\{a_n\\}$为等差数列, 其前$n$项和为$S_n$, 若$a_1=1$, $a_3=5$, $S_n=64$, 则\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题4",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012058": {
"id": "012058",
"content": "已知复数$z_0=3+\\mathrm{i}$($\\mathrm{i}$为虚数单位), 复数$z$满足$z\\cdot z_0=3z+z_0$, 则$|z|=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题5",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012059": {
"id": "012059",
"content": "已知$\\tan \\theta =3$, 则$\\sin 2\\theta -2\\cos ^2\\theta$的值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题6",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012060": {
"id": "012060",
"content": "已知$\\{a_n\\}$是各项均为正数的等比数列,\n且$a_6=2$, 则$\\log_2(a_1\\cdot a_2\\cdot a_3\\cdot \\cdots \\cdot a_{11})=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题7",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012061": {
"id": "012061",
"content": "已知函数$f(x)=A\\sin (\\omega x+\\varphi)(A,\\omega ,\\varphi$为常数且$A>0,\\omega >0$)的部分图像如图所示, 则$f(0)$的值是\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = {-pi/6}:{11*pi/12}, samples = 100] plot (\\x,{sqrt(2)*sin(2*\\x/pi*180+60)});\n\\draw [dashed] ({pi/12},0) -- ({pi/12},{sqrt(2)}) -- (0,{sqrt(2)});\n\\draw [dashed] ({7*pi/12},0) -- ({7*pi/12},{-sqrt(2)}) -- (0,{-sqrt(2)});\n\\draw (0,{-sqrt(2)}) node [left] {$-\\sqrt{2}$};\n\\draw ({pi/3},0) node [below] {$\\dfrac{\\pi}{3}$};\n\\draw ({7*pi/12},0) node [above] {$\\dfrac{7\\pi}{12}$};\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题8",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012062": {
"id": "012062",
"content": "设$f(x)$是$\\mathbf{R}$上的奇函数, $g(x)$是$\\mathbf{R}$上的偶函数, 若函数$f(x)+g(x)$的值域为$[-1,4]$, 则$f(x)-g(x)$的值域为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题9",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012063": {
"id": "012063",
"content": "若函数$y=\\log_a(x^2-ax+1)$有最小值, 则$a$的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题10",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012064": {
"id": "012064",
"content": "已知关于$x$的方程$|x+a^2|+|x-a^2|=-x^2+2x-1+2a^2$有解, 则实数$a$的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题11",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012065": {
"id": "012065",
"content": "如果数列$\\{a_n\\}$满足: $a_1=1$,$ a_{2021}=2017$, 且对于任意$n\\in \\mathbf{N}$, $n\\ge 1$, 存在实数$a$使得$a_n$, $a_{n+1}$是方程$x^2-(2a+1)x+a^2+a=0$的两个根, 则$a_{100}$的所有可能值构成的集合是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题12",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012066": {
"id": "012066",
"content": "若$\\cos \\theta >0$, 且$\\sin 2\\theta <0$, 则角$\\theta$的终边所在象限是\\bracket{20}.\n\\fourch{第一象限}{第二象限}{第三象限}{第四象限}",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题13",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012067": {
"id": "012067",
"content": "记$S_n$为数列$\\{a_n\\}$的前$n$项和, ``$\\{a_n\\}$是递增数列''是``$\\{S_n\\}$是递增数列''的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分也非必要条件}",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题14",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012068": {
"id": "012068",
"content": "有四个命题:\n\\textcircled{1} 若$0>a>b$, 则$\\dfrac 1a<\\dfrac 1b$; \\textcircled{2} 若$a<b<0$, 则$a^2>b^2$; \\textcircled{3} 若$\\dfrac 1a>1$, 则$1>a$; \\textcircled{4} 若$1<a<2$且$0<b<3$, 则$-2<a-b<2$. 其中真命题是\\bracket{20}.\n\\fourch{\\textcircled{1}和\\textcircled{2}}{\\textcircled{2}和\\textcircled{4}}{\\textcircled{1}和\\textcircled{3}}{\\textcircled{1}\\textcircled{2}\\textcircled{3}\\textcircled{4}}",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题15",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012069": {
"id": "012069",
"content": "已知$A=\\{y|y=\\sin (\\omega n+\\varphi),n\\in \\mathbf{Z}\\}$, 若存在$\\varphi$使得集合$A$中恰有3个元素, 则$\\omega$的取值不可能是\\bracket{20}.\n\\fourch{$\\dfrac 27\\pi$}{$\\dfrac 25\\pi$}{$\\dfrac{\\pi }2$}{$\\dfrac 23\\pi$}",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题16",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012070": {
"id": "012070",
"content": "已知关于$x$的不等式$\\dfrac{ax-1}{x-a}<0$.\\\\\n(1) 若$2$为该不等式的一个解, 求实数$a$的取值范围;\\\\\n(2) 当$a>0$时, 求解该不等式.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题17",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012071": {
"id": "012071",
"content": "在$\\triangle ABC$中, 角$A$、$B$、$C$所对的边长分别为$a$、$b$、$c$,\n且$2\\sqrt 3\\sin B\\cos B-2\\cos ^2B=1$.\\\\\n(1) 求角$B$的大小;\\\\\n(2) 若$b=2$, 求$\\triangle ABC$的面积的最大值.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题18",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012072": {
"id": "012072",
"content": "某地博物馆整体理念是将生态自然与人文历史有机的融合, 与周边环境自然过渡连接. 为了减少能源损耗, 馆顶和外墙需要建造隔热层. 博物馆每年节省的能源费用$h$(单位: 万元)与隔热层厚度$x$(单位: $\\text{cm}$)满足关系: $h(x)=32-\\dfrac{32}{x+k}$($0\\le x\\le 20$). 当不建造隔热层时, 每年节省费用为$0$, 但是隔热层自身需要消耗能源, 每年隔热层自身消耗的能源费用$g$(单位: 万元)与隔热层厚度$x$(单位: $\\text{cm}$)满足关系: $g(x)=2x$.\\\\\n(1) \\textcircled{1} 求$k$的值; \\textcircled{2} 为了使得每年隔热层节省的能源费用不低于隔热层自身消耗的能源费用, 隔热层建造的厚度$x$应该满足什么条件?\\\\\n(2) 在建造厚度为$x$的隔热层后, 每年博物馆真正节省的能源费用$f(x)=h(x)-g(x)$, 求每年博物馆真正节省的能源费用的最大值.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题19",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012073": {
"id": "012073",
"content": "设函数$f(x)=\\dfrac{2x+1}x$($x>0$), 数列$\\{a_n\\}$满足$a_1=1$, $a_n=f(\\dfrac 1{a_{n-1}})$($n\\in \\mathbf{N}$, $n\\ge 2$).\\\\\n(1) 求数列$\\{a_n\\}$的通项公式;\\\\\n(2) 设$T_n=a_1a_2-a_2a_3+a_3a_4-a_4a_5+\\cdots -a_{2n}a_{2n+1}$, 若$T_n\\ge tn^2$对$n\\in \\mathbf{N}^*$恒成立, 求实数$t$的取值范围;\\\\\n(3) 是否存在以$1$为首项, 公比为$q$($0<q<5$, $q\\in \\mathbf{N}$)的等比数列$\\{a_{n_k}\\}$, $k\\in \\mathbf{N}$, $k\\ge 1$, 使得数列$\\{a_{n_k}\\}$中每一项都是数列$\\{a_n\\}$中不同的项, 若存在, 求出所有满足条件的数列$\\{n_k\\}$的通项公式; 若不存在, 说明理由.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题20",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012074": {
"id": "012074",
"content": "若对于定义域为$\\mathbf{R}$的函数$f(x)$图像上任意一点$P(x_0,f(x_0))$, 存在图像过点$P$的函数$g(x)=kx+b$, 当$x\\ne x_0$时, $f(x)>g(x)$恒成立, 则称该函数满足性质$M$.\\\\\n(1) 判断函数$f_1(x)=\\sin x$, $f_2(x)=x^2$是否满足性质$M$(无需说明理由);\\\\\n(2) 若函数$f(x)$满足性质$M$, 求证: $f(x)$不是奇函数;\\\\\n(3) 若函数$f(x)$满足性质$M$, 求证: 当$\\lambda >0$, $x_1\\ne x_2$时, 不等式\n$\\dfrac{f(x_1)+\\lambda f(x_2)}{1+\\lambda }>f(\\dfrac{x_1+\\lambda x_2}{1+\\lambda })$恒成立,\n并求函数$h(x)=f(x)+f(2021-x),x\\in [1,2020]$的最大值.",
"objs": [],
"tags": [],
"genre": "",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届奉贤中学晋元中学高三期中考试试题21",
"edit": [
"20221117\t朱敏慧\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"020001": {
"id": "020001",
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",