收录三角部分双基知识梳理
This commit is contained in:
parent
08eb6da575
commit
7ea6ae26d9
|
|
@ -1682,5 +1682,244 @@
|
|||
"K0235001X"
|
||||
],
|
||||
"content": "导数可用来研究函数在某区间上的\\blank{50}, 对解决何时利润最大、何时用料最省等优化问题发挥着重要作用."
|
||||
},
|
||||
"B00233": {
|
||||
"lesson": "K0301",
|
||||
"objs": [
|
||||
"K0301002B"
|
||||
],
|
||||
"content": "特殊锐角的正弦, 余弦和正切:\n\\begin{center}\n\\begin{tabular}{|c|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|}\\hline 角度 $\\alpha$ & $\\sin \\alpha$ & $\\cos \\alpha$ & $\\tan \\alpha$ & $\\cot \\alpha$ \\\\\n\\hline $30^{\\circ}$ & & & & \\\\\n\\hline $45^{\\circ}$ & & & & \\\\\n\\hline $60^{\\circ}$ & & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
|
||||
},
|
||||
"B00234": {
|
||||
"lesson": "K0301",
|
||||
"objs": [
|
||||
"K0301001B",
|
||||
"K0301003B"
|
||||
],
|
||||
"content": "一条射线绕端点按逆时针方向旋转所成的角为\\blank{50}, 其度量值是正的; 一条射线绕端点按顺时针方向旋转所成的角为\\blank{50}, 其度量值是负的; 当一条射线没有旋转时, 我们也认为形成了一个角, 称为\\blank{50}."
|
||||
},
|
||||
"B00235": {
|
||||
"lesson": "K0301",
|
||||
"objs": [
|
||||
"K0301004B"
|
||||
],
|
||||
"content": "所有与角 $\\alpha$ 的终边重合的角(包括角 $\\alpha$ 本身)的集合表示为\\blank{100}."
|
||||
},
|
||||
"B00236": {
|
||||
"lesson": "K0302",
|
||||
"objs": [
|
||||
"K0302001B"
|
||||
],
|
||||
"content": "弧长等于\\blank{50}的弧所对的圆心角叫做 $1$ 弧度的角, 用``\\blank{50}''作为单位来度量角的单位制叫做弧度制."
|
||||
},
|
||||
"B00237": {
|
||||
"lesson": "K0302",
|
||||
"objs": [
|
||||
"K0302001B"
|
||||
],
|
||||
"content": "$1^{\\circ}=$\\blank{50}弧度, $1$ 弧度 $=$\\blank{50}.\n\\begin{center}\n\\begin{tabular}{|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|}\n\\hline 角度 & $0^{\\circ}$ & $30^{\\circ}$ & $45^{\\circ}$ & $60^{\\circ}$ & & $135^{\\circ}$ & $180^{\\circ}$ & $270^{\\circ}$ & $360^{\\circ}$ \\\\\n\\hline 弧度 & & & & & $\\dfrac{\\pi}{2}$ & $\\dfrac{2 \\pi}{3}$ & $\\dfrac{5 \\pi}{6}$ & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
|
||||
},
|
||||
"B00238": {
|
||||
"lesson": "K0302",
|
||||
"objs": [
|
||||
"K0302002B"
|
||||
],
|
||||
"content": "设扇形的半径为 $r$, 孤长为 $l$, 圆心角为 $\\alpha$($0<\\alpha<2 \\pi$), 则扇形的弧长 $l=$\\blank{50}, 扇形的面积 $S=$\\blank{50}."
|
||||
},
|
||||
"B00239": {
|
||||
"lesson": "K0303",
|
||||
"objs": [
|
||||
"K0303001B"
|
||||
],
|
||||
"content": "如图, 在角 $\\alpha$ 的终边上任取一点 $P$, 设 $P$ 的坐标为 $(x, y)$, $|OP|=r$, 则 $r=\\sqrt{x^2+y^2}$($r>0$), 我们规定:\n$\\sin \\alpha=$\\blank{50}, $\\cos \\alpha=$\\blank{50},\\\\\n$\\tan \\alpha=$\\blank{50}($\\alpha \\neq$\\blank{50}, $k\\in \\mathbf{Z}$),\\\\\n$\\cot \\alpha=$\\blank{50}($\\alpha \\neq$\\blank{50}, $k\\in \\mathbf{Z}$).\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-0.5,0) -- (2,0) node [below] {$x$} coordinate (x);\n\\draw [->] (0,-0.5) -- (0,1.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\draw (0,0) -- (50:2);\n\\draw (50:1.5) node [right] {$P(x,y)$} coordinate (P);\n\\draw ($(O)!(P)!(x)$) node [below] {$M$} coordinate (M);\n\\draw (P)--(M) node [midway, right] {$y$};\n\\path (O) -- (P) node [midway, above left] {$r$};\n\\path (O) -- (M) node [midway, below] {$x$};\n\\draw pic [draw, \"$\\alpha$\", scale = 0.6, ->, angle eccentricity = 1.8] {angle = x--O--P};\n\\end{tikzpicture}\n\\end{center}"
|
||||
},
|
||||
"B00240": {
|
||||
"lesson": "K0303",
|
||||
"objs": [
|
||||
"K0303002B"
|
||||
],
|
||||
"content": "在下表中填写相应的符号(``$+$''或``$-$''):\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline $\\alpha$所在象限 & $P$的横坐标$x$ & $P$的纵坐标$y$ & $\\sin \\alpha$ & $\\cos \\alpha$ & $\\tan \\alpha$ & $\\cot \\alpha$ \\\\\n\\hline 第一象限 & & & & & & \\\\\n\\hline 第二象限 & & & & & & \\\\\n\\hline 第三象限 & & & & & & \\\\\n\\hline 第四象限 & & & & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
|
||||
},
|
||||
"B00241": {
|
||||
"lesson": "K0304",
|
||||
"objs": [
|
||||
"K0304001B"
|
||||
],
|
||||
"content": "若角 $\\alpha$ 的终边与以原点为圆心的单位圆交于唯一的一点 $P(x, y)$, 则点 $P$ 的坐标用 $\\alpha$ 的三角比表示为\\blank{50}."
|
||||
},
|
||||
"B00242": {
|
||||
"lesson": "K0304",
|
||||
"objs": [
|
||||
"K0304002B"
|
||||
],
|
||||
"content": "同角的三角比关系: \\\\\n(1) $\\sin ^2 \\alpha+\\cos ^2 \\alpha=$\\blank{50};\\\\\n(2) $\\dfrac{\\sin \\alpha}{\\cos \\alpha}= $\\blank{50};($\\cos \\alpha \\neq 0$)\\\\\n(3) $\\dfrac{\\cos \\alpha}{\\sin \\alpha}= $\\blank{50};($\\sin \\alpha \\neq 0$)\\\\\n(4) $\\tan \\alpha \\cdot \\cot \\alpha=1$."
|
||||
},
|
||||
"B00243": {
|
||||
"lesson": "K0305",
|
||||
"objs": [
|
||||
"K0305001B"
|
||||
],
|
||||
"content": "$(\\sin \\alpha \\pm \\cos \\alpha)^2=1 \\pm$\\blank{100}."
|
||||
},
|
||||
"B00244": {
|
||||
"lesson": "K0305",
|
||||
"objs": [
|
||||
"K0305001B"
|
||||
],
|
||||
"content": "$\\sin \\alpha \\cdot \\cos \\alpha=$\\blank{100}.(用 $\\tan \\alpha$ 表示)."
|
||||
},
|
||||
"B00245": {
|
||||
"lesson": "K0306",
|
||||
"objs": [
|
||||
"K0306001B",
|
||||
"K0306002B"
|
||||
],
|
||||
"content": "与``终边重合''有关的诱导公式:\\\\\n当 $k \\in \\mathbf{Z}$ 时, $\\sin (\\alpha+2 k \\pi)=$\\blank{50}; $\\cos (\\alpha+2 k \\pi)=$\\blank{50}; $\\tan (\\alpha+2 k \\pi)=$\\blank{50}; $\\cot (\\alpha+2 k \\pi)=$\\blank{50}."
|
||||
},
|
||||
"B00246": {
|
||||
"lesson": "K0306",
|
||||
"objs": [
|
||||
"K0306001B",
|
||||
"K0306002B"
|
||||
],
|
||||
"content": "与``关于$x$轴成轴对称''有关的诱导公式:\\\\\n$\\sin (-\\alpha)=$\\blank{50}; $\\cos(-\\alpha)=$\\blank{50}; $\\tan (-\\alpha)=$\\blank{50}; $\\cot(-\\alpha)=$\\blank{50}."
|
||||
},
|
||||
"B00247": {
|
||||
"lesson": "K0306",
|
||||
"objs": [
|
||||
"K0306001B",
|
||||
"K0306002B"
|
||||
],
|
||||
"content": "与``关于原点成中心对称''有关的诱导公式:\\\\\n$\\sin (\\pi+\\alpha)=$\\blank{50}; $\\cos (\\pi+\\alpha)=$\\blank{50}; $\\tan (\\pi+\\alpha)=$\\blank{50}; $\\cot (\\pi+\\alpha)=$\\blank{50}."
|
||||
},
|
||||
"B00248": {
|
||||
"lesson": "K0306",
|
||||
"objs": [
|
||||
"K0306001B",
|
||||
"K0306002B"
|
||||
],
|
||||
"content": "与``关于$y$轴成轴对称''有关的诱导公式:\\\\\n$\\sin (\\pi-\\alpha)=$\\blank{50}; $\\cos (\\pi-\\alpha)=$\\blank{50}; $\\tan (\\pi-\\alpha)=$\\blank{50}; $\\cot (\\pi-\\alpha)=$\\blank{50}."
|
||||
},
|
||||
"B00249": {
|
||||
"lesson": "K0307",
|
||||
"objs": [
|
||||
"K0307001B",
|
||||
"K0307003B"
|
||||
],
|
||||
"content": "与``关于直线$y=x$成轴对称''有关的诱导公式:\\\\\n$\\sin (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}; $\\cos (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}; $\\tan (\\dfrac{\\pi}{2}-\\alpha)=\\blank{50}$; $\\cot (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}."
|
||||
},
|
||||
"B00250": {
|
||||
"lesson": "K0307",
|
||||
"objs": [
|
||||
"K0307001B",
|
||||
"K0307003B"
|
||||
],
|
||||
"content": "与``旋转$90^\\circ$''有关的诱导公式:\\\\\n$\\sin (\\dfrac{\\pi}{2}+\\alpha)=\\blank{50}$; $\\cos (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}; $\\tan (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}; $\\cot (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}."
|
||||
},
|
||||
"B00251": {
|
||||
"lesson": "K0308",
|
||||
"objs": [
|
||||
"K0308002B"
|
||||
],
|
||||
"content": "满足 $\\sin x=\\sin \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
|
||||
},
|
||||
"B00252": {
|
||||
"lesson": "K0308",
|
||||
"objs": [
|
||||
"K0308002B"
|
||||
],
|
||||
"content": "满足 $\\cos x=\\cos \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
|
||||
},
|
||||
"B00253": {
|
||||
"lesson": "K0308",
|
||||
"objs": [
|
||||
"K0308002B"
|
||||
],
|
||||
"content": "满足 $\\tan x=\\tan \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
|
||||
},
|
||||
"B00254": {
|
||||
"lesson": "K0309",
|
||||
"objs": [
|
||||
"K0309001B"
|
||||
],
|
||||
"content": "两角差的余弦公式: $\\cos (\\alpha-\\beta)=$\\blank{50}."
|
||||
},
|
||||
"B00255": {
|
||||
"lesson": "K0309",
|
||||
"objs": [
|
||||
"K0309002B"
|
||||
],
|
||||
"content": "两角和的余弦公式: $\\cos (\\alpha+\\beta)=$\\blank{50}."
|
||||
},
|
||||
"B00256": {
|
||||
"lesson": "K0310",
|
||||
"objs": [
|
||||
"K0310001B"
|
||||
],
|
||||
"content": "两角和与差的正弦公式: $\\sin (\\alpha \\pm \\beta)=$\\blank{50}."
|
||||
},
|
||||
"B00257": {
|
||||
"lesson": "K0310",
|
||||
"objs": [
|
||||
"K0310001B"
|
||||
],
|
||||
"content": "两角和与差的正切公式: $\\tan (\\alpha \\pm \\beta)=$\\blank{50}."
|
||||
},
|
||||
"B00258": {
|
||||
"lesson": "K0311",
|
||||
"objs": [
|
||||
"K0311002B"
|
||||
],
|
||||
"content": "辅助角公式: 已知$a,b$不全为$0$, 则$a \\sin \\alpha+b \\cos \\alpha=\\sin$\\blank{50}, 其中辅助角 $\\varphi$ 满足\n$\\cos \\varphi=$\\blank{50}, $\\sin \\varphi=$\\blank{50}."
|
||||
},
|
||||
"B00259": {
|
||||
"lesson": "K0312",
|
||||
"objs": [
|
||||
"K0312001B"
|
||||
],
|
||||
"content": "二倍角的正弦公式: $\\sin 2 \\alpha=$\\blank{50}."
|
||||
},
|
||||
"B00260": {
|
||||
"lesson": "K0312",
|
||||
"objs": [
|
||||
"K0312001B",
|
||||
"K0312002B"
|
||||
],
|
||||
"content": "二倍角的余弦公式: $\\cos 2 \\alpha=$\\blank{50}$=$\\blank{50}$=$\\blank{50}."
|
||||
},
|
||||
"B00261": {
|
||||
"lesson": "K0312",
|
||||
"objs": [
|
||||
"K0312001B"
|
||||
],
|
||||
"content": "二倍角的正切公式: $\\tan 2 \\alpha=$\\blank{50}."
|
||||
},
|
||||
"B00262": {
|
||||
"lesson": "K0312",
|
||||
"objs": [
|
||||
"K0312003B"
|
||||
],
|
||||
"content": "常用降次公式:\\\\\n(1) $\\sin ^2 \\alpha= \\cos ^2 \\alpha=$\\blank{50};\\\\\n(2) $(\\sin \\alpha \\pm \\cos \\alpha)^2=$\\blank{50}."
|
||||
},
|
||||
"B00263": {
|
||||
"lesson": "K0313",
|
||||
"objs": [
|
||||
"K0313001B"
|
||||
],
|
||||
"content": "半角公式: \\\\\n$\\sin \\dfrac{\\alpha}{2}=$\\blank{50}, $\\cos \\dfrac{\\alpha}{2}=$\\blank{50}, $\\tan \\dfrac{\\alpha}{2}=$\\blank{50}."
|
||||
},
|
||||
"B00264": {
|
||||
"lesson": "K0313",
|
||||
"objs": [
|
||||
"K0313002B"
|
||||
],
|
||||
"content": "积化和差公式:\\\\\n$\\sin\\alpha\\cos\\beta=$\\blank{100}, $\\cos\\alpha\\sin\\beta=$\\blank{100},\\\\\n$\\cos\\alpha\\cos\\beta=$\\blank{100}, $\\sin\\alpha\\sin\\beta=$\\blank{100}."
|
||||
},
|
||||
"B00265": {
|
||||
"lesson": "K0313",
|
||||
"objs": [
|
||||
"K0313003B"
|
||||
],
|
||||
"content": "和差化积公式:\\\\\n$\\sin \\alpha+\\sin \\beta=$\\blank{100}, $\\sin \\alpha-\\sin \\beta=$\\blank{100},\\\\\n$\\cos \\alpha+\\cos \\beta=$\\blank{100}, $\\cos \\alpha-\\cos \\beta=$\\blank{100}."
|
||||
}
|
||||
}
|
||||
Reference in New Issue