修改三处题目与答案的问题

This commit is contained in:
weiye.wang 2024-02-08 13:26:51 +08:00
parent 9309ab4559
commit 811685a06d
1 changed files with 9 additions and 6 deletions

View File

@ -3991,7 +3991,7 @@
}, },
"000106": { "000106": {
"id": "000106", "id": "000106",
"content": "填空题:\\\\\n(1) 在$\\triangle ABC$中, 若$a^2+b^2+ab=c^2$, 则$C=$\\blank{50};\\\\\n(2) 若$\\sin \\theta =a$, $\\cos \\theta =-2a$, 且$\\theta$为第四象限的角, 则实数$a=$\\blank{50}.\\\\", "content": "填空题:\\\\\n(1) 在$\\triangle ABC$中, 若$a^2+b^2+ab=c^2$, 则$C=$\\blank{50};\\\\\n(2) 若$\\sin \\theta =a$, $\\cos \\theta =-2a$, 且$\\theta$为第四象限的角, 则实数$a=$\\blank{50}.",
"objs": [ "objs": [
"K0315003B", "K0315003B",
"K0305001B" "K0305001B"
@ -4006,7 +4006,8 @@
"usages": [], "usages": [],
"origin": "教材复习题", "origin": "教材复习题",
"edit": [ "edit": [
"20220624\t王伟叶, 余利成" "20220624\t王伟叶, 余利成",
"20240208\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [],
@ -4251,7 +4252,7 @@
}, },
"000115": { "000115": {
"id": "000115", "id": "000115",
"content": "(1) 完成下表($\\theta$为弧度数):\n\\begin{center}\n\\begin{tabular}{|c|p{.15\\textwidth}<{\\centering}|p{.15\\textwidth}<{\\centering}|p{.15\\textwidth}<{\\centering}|p{.15\\textwidth}<{\\centering}|p{.15\\textwidth}<{\\centering}|}\n \\hline\n $\\theta$ & $1$ & $0.5$ & $0.1$ & $0.01$ & $0.001$\\\\ \\hline\n $\\sin\\theta$ & & & & &\\\\ \\hline\n $\\dfrac{\\sin\\theta}{\\theta}$ & & & & &\\\\ \\hline\n\\end{tabular}\n\\end{center}\n(2) 观察上表中的数据, 你能发现什么规律?\\\\\n(3) 已知$0<\\theta <\\dfrac \\pi 2$, 利用图形面积公式证明$\\sin \\theta <\\theta <\\tan \\theta$, 并应用该公式说明(2)中猜想的合理性.", "content": "(1) 完成下表($\\theta$为弧度数):\n\\begin{center}\n\\begin{tabular}{|c|p{.12\\textwidth}<{\\centering}|p{.12\\textwidth}<{\\centering}|p{.12\\textwidth}<{\\centering}|p{.12\\textwidth}<{\\centering}|p{.12\\textwidth}<{\\centering}|}\n \\hline\n $\\theta$ & $1$ & $0.5$ & $0.1$ & $0.01$ & $0.001$\\\\ \\hline\n $\\sin\\theta$ & & & & &\\\\ \\hline\n $\\dfrac{\\sin\\theta}{\\theta}$ & & & & &\\\\ \\hline\n\\end{tabular}\n\\end{center}\n(2) 观察上表中的数据, 你能发现什么规律?\\\\\n(3) 已知$0<\\theta <\\dfrac \\pi 2$, 利用图形面积公式证明$\\sin \\theta <\\theta <\\tan \\theta$, 并应用该公式说明(2)中猜想的合理性.",
"objs": [ "objs": [
"K0302002B" "K0302002B"
], ],
@ -4265,7 +4266,8 @@
"usages": [], "usages": [],
"origin": "教材复习题", "origin": "教材复习题",
"edit": [ "edit": [
"20220624\t王伟叶, 余利成" "20220624\t王伟叶, 余利成",
"20240208\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [],
@ -4285,7 +4287,7 @@
"J20240513-第一轮复习讲义13解三角形" "J20240513-第一轮复习讲义13解三角形"
], ],
"genre": "解答题", "genre": "解答题",
"ans": "(1) \\textcircled{1} $B$不存在, \\textcircled{2} $B=90^\\circ$, \\textcircled{3} $B=\\arcsin\\dfrac 9{13}$或$\\pi-\\arcsin \\dfrac 9{13}$, \\textcircled{4} $B=30^\\circ$, \\textcircled{5} $B=\\arcsin\\dfrac 9{44}$; (2) 当$0<a<9$时, 无解; 当$a=9$或$a\\ge 18$时, 一解; 当$9<a<18$时, 两解.", "ans": "(1) \\textcircled{1} $B$不存在, \\textcircled{2} $B=90^\\circ$, \\textcircled{3} $B=\\arcsin\\dfrac 9{13}$或$\\pi-\\arcsin \\dfrac 9{13}$, \\textcircled{4} $B=30^\\circ$, \\textcircled{5} $B=\\arcsin\\dfrac 9{22}$; (2) 当$0<a<9$时, 无解; 当$a=9$或$a\\ge 18$时, 一解; 当$9<a<18$时, 两解.",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [ "usages": [
@ -4311,7 +4313,8 @@
], ],
"origin": "教材复习题", "origin": "教材复习题",
"edit": [ "edit": [
"20220624\t王伟叶, 余利成" "20220624\t王伟叶, 余利成",
"20240208\t王伟叶"
], ],
"same": [ "same": [
"008210" "008210"