添加12道自拟题目(高三周末卷12)

This commit is contained in:
wangweiye7840 2024-01-03 17:21:24 +08:00
parent 8916267892
commit 8169fd5646
1 changed files with 240 additions and 0 deletions

View File

@ -616288,6 +616288,246 @@
"space": "4em",
"unrelated": []
},
"022985": {
"id": "022985",
"content": "二项式 $(3 x-1)^{11}$ 的展开式中 $x^3$ 的系数为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022986": {
"id": "022986",
"content": "复数 $\\dfrac{1+\\mathrm{i}}{3+4 \\mathrm{i}}$ ($\\mathrm{i}$ 为虚数单位) 的共轭复数为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022987": {
"id": "022987",
"content": "已知 $y=f(x)$ 是定义在 $\\mathbf{R}$ 上的偶函数, 且它在 $[0,+\\infty)$ 上是严格增函数, 那么使得 $f(-2) \\leq f(a)$ 成立的实数 $a$ 的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022988": {
"id": "022988",
"content": "已知等差数列 $\\{a_n\\}$ 的公差 $d=3, S_n$ 表示 $\\{a_n\\}$ 的前 $n$ 项和, 若数列 $\\{S_n\\}$ 是递增数列, 则 $a_1$ 的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022989": {
"id": "022989",
"content": "数字不重复, 且个位数字与千位数字之差的绝对值等于 $2$ 的四位数的个数为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022990": {
"id": "022990",
"content": "过抛物线 $C: y^2=2 x$ 的焦点 $F$, 且斜率为 $\\sqrt{3}$ 的直线交抛物线 $C$ 于点 $M$ ($M$ 在 $\\mathrm{x}$ 轴的上方), $l$ 为抛物线 $C$ 的准线, 点 $N$ 在 $l$ 上且 $MN \\perp l$, 则 $M$ 到直线 $NF$ 的距离为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022991": {
"id": "022991",
"content": "已知数列 $\\{a_n\\}$ 的前 $n$ 项和为 $S_n$, 对任意正整数 $n, S_n=(-1)^n a_n+\\dfrac{1}{2^n}+n-3$ 且 $(a_1-p)(a_2-p)<0$,则实数 $p$ 的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022992": {
"id": "022992",
"content": "已知 $m \\in \\mathbf{R}$, 函数 $f(x)=\\begin{cases}-4 x+1,& x>-1,\\\\x^2+6 x+10,& x \\leq-1,\\end{cases}$ 且关于 $x$ 的不等式 $f(x)-m x-2 m-2<0$ 的解集是 $(x_1, x_2) \\cup(x_3,+\\infty)$. 若 $x_1 x_2 x_3>0$, 则 $x_1+x_2+x_3$ 的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022993": {
"id": "022993",
"content": "一个棱锥被平行于底面的平面所截, 截面面积恰好是棱锥底面面积的一半, 则截得的小棱锥与原棱锥的高之比是\\bracket{20}.\n\\fourch{$1: 2$}{$1: 8$}{$\\sqrt{2}: 2$}{$\\sqrt{2}: 4$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022994": {
"id": "022994",
"content": "若圆 $C_1: x^2+y^2=1$ 和圆 $C_2: x^2+y^2-6 x-8 y-k=0$ C有公共点, 则实数 $k$ 的取值范围是\\bracket{20}.\n\\fourch{$(-9,11)$}{$(-25,-9)$}{$(-\\infty,-9) \\cup$($11,+\\infty$)}{$(-25,-9) \\cup$($11,+\\infty$)}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"022995": {
"id": "022995",
"content": "在数列 $\\{a_n\\}$ 中, $a_1=0$, 且对任意正整数 $m$, $a_{2 m-1}, a_{2 m}, a_{2 m+1}$ 构成以 $2 m$ 为公差的等差数列.\\\\\n(1) 求证: $a_4, a_5, a_6$ 成等比数列;\\\\\n(2) 求数列 $\\{a_n\\}$ 的通项公式;\\\\\n(3) 设 $S=\\dfrac{2^2}{a_2}+\\dfrac{3^2}{a_3}+\\dfrac{4^2}{a_4}+\\cdots+\\dfrac{99^2}{a_{99}}$, 求出 $S$ 的值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"022996": {
"id": "022996",
"content": "已知椭圆 $\\Gamma: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1,$($a>b>0$). 点 $A$ 为椭圆短轴的上端点, $P$ 为椭圆上异于 $A$ 点的任一点. 若 $P$点到 $A$ 点距离的最大值仅在 $P$ 点为短轴的另一端点时取到, 则称此椭圆为``圆椭圆''. 已知 $b=2$.\\\\\n(1) 若 $a=\\sqrt{5}$, 判断椭圆 $\\Gamma$ 是否为``圆椭圆'';\\\\\n(2) 若椭圆 $\\Gamma$ 是``圆椭圆'',求 $a$ 的取值范围;\\\\\n(3) 若椭圆 $\\Gamma$ 是``圆椭圆'', 且 $a$ 取最大值. $Q$ 为 $P$ 关于原点 $O$ 的对称点, $Q$ 也异于 $A$ 点. 直线 $AP$ 、 $AQ$ 分别与 $x$ 轴交于 $M$、$N$ 两点, 试问以线段 $MN$ 为直径的圆是否过定点? 证明你的结论.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "自拟题目",
"edit": [
"20240103\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": {
"id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",