20230401 night

This commit is contained in:
weiye.wang 2023-04-01 22:27:15 +08:00
parent b7a3622198
commit 899521a535
4 changed files with 803 additions and 44 deletions

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [
{
@ -187,46 +187,7 @@
"寒假作业反馈练习.tex\n",
"较难题.tex\n",
"一月新课作业.tex\n",
"正态分布及成对数据测试.tex\n",
"031158\n",
"\n",
"\n",
"031159\n",
"\n",
"\n",
"031196\n",
"\n",
"\n",
"031160\n",
"\n",
"\n",
"031162\n",
"\n",
"\n",
"031163\n",
"\n",
"\n",
"031164\n",
"\n",
"\n",
"031202\n",
"\n",
"\n",
"031201\n",
"\n",
"\n",
"031203\n",
"\n",
"\n",
"031161\n",
"\n",
"\n",
"031179\n",
"\n",
"\n",
"031188\n",
"\n",
"\n"
"正态分布及成对数据测试.tex\n"
]
}
],

View File

@ -1,5 +1,5 @@
#修改起始id,出处,文件名
starting_id = 40422
starting_id = 40485
raworigin = ""
filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目10.tex"
editor = "20230401\t王伟叶"

View File

@ -386,7 +386,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "pythontest",
"display_name": "mathdept",
"language": "python",
"name": "python3"
},
@ -405,7 +405,7 @@
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc"
}
}
},

View File

@ -457010,5 +457010,803 @@
"related": [],
"remark": "",
"space": ""
},
"040464": {
"id": "040464",
"content": "设集合$A=\\{x \\| x |<2, x \\in \\mathbf{R}\\}$, $B=\\{x | x^2-4 x+3 \\geq 0,\\ x \\in \\mathbf{R}\\}$, 则$A \\cap B=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题1",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040465": {
"id": "040465",
"content": "已知$\\mathrm{i}$为虚数单位, 复数$z$满足$\\dfrac{1-z}{1+z}=\\mathrm{i}$, 则$|z|=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题2",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040466": {
"id": "040466",
"content": "在平面直角坐标系内, 直线$l: 2 x+y-2=0$, 将$l$与两条坐标轴围成的封闭图形绕$x$轴旋转一周, 所得几何体的体积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题3",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040467": {
"id": "040467",
"content": "已知$\\sin 2 \\theta+\\sin \\theta=0$, $\\theta \\in(\\dfrac{\\pi}{2}, \\pi)$, 则$\\tan 2 \\theta=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题4",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040468": {
"id": "040468",
"content": "设定义在$\\mathbf{R}$上的奇函数$y=f(x)$, 当$x>0$时, $f(x)=2^x-4$, 则不等式$f(x) \\leq 0$的解集是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题5",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040469": {
"id": "040469",
"content": "在平面直角坐标系$xOy$中, 有一定点$A(1,1)$, 若线段$OA$的垂直平分线过抛物线$C: y^2=2 p x(p>0)$的焦点, 则抛物线$C$的方程为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题6",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040470": {
"id": "040470",
"content": "设某产品的一个部件来自三个供应商, 这三个供应商的良品率分别是$0.92$、$0.95$、$0.94$, 若这三个供应商的供货比例为$3: 2: 1$, 那么这个部件的总体良品率是\\blank{50}(用最简分数作答).",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题7",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040471": {
"id": "040471",
"content": "记$(2 x+\\dfrac{1}{x})^n$($n \\in \\mathbf{N}$, $n\\ge 1$)的展开式中第$m$项的系数为$b_m$, 若$b_3=2 b_4$, 则$n=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题8",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040472": {
"id": "040472",
"content": "已知一个正四棱锥的每条棱长均为$2$, 从该正四棱锥的$5$个顶点中任取$3$个点, 设随机变量$X$表示这三个点所构成的三角形的面积, 则其数学期望$E[X]=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题9",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040473": {
"id": "040473",
"content": "已知函数$y=x^2+p x+q$有两个零点$1$、$2$, 数列$\\{x_n\\}$满足$x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}$, 若$a_n=\\ln \\dfrac{x_n-2}{x_n-1}$, 且$a_1=-2$, 则数列$\\{a_n\\}$的前$2023$项的和为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题10",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040474": {
"id": "040474",
"content": "平面直角坐标系$xOy$中, 抛物线$y^2=2 x$的焦点为$F$, 设$M$是抛物线上的动点, 则$\\dfrac{|MO|}{|MF|}$的最大值是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题11",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040475": {
"id": "040475",
"content": "已知$a>0$, 函数$f(x)=x-\\dfrac{a}{x}$($x \\in[1,2]$)的图像的两个端点分别为$A$、$B$, 设$M$是函数$f(x)$图像上任意一点, 过$M$作垂直于$x$轴的直线$l$, 且$l$与线段$AB$交于点$N$, 若$|MN| \\leq 1$恒成立, 则$a$的最大值是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题12",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040476": {
"id": "040476",
"content": "``$\\sin \\alpha=0$''是``$\\cos \\alpha=1$''的\\bracket{20}条件.\n\\fourch{充分非必要}{必要非充分}{充要}{既非充分也非必要}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题13",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040477": {
"id": "040477",
"content": "设$l_1$、$l_2$为两条不同的直线, $\\alpha$为一个平面, 则下列命题正确的是()\n\\onech{若直线$l_1\\parallel$平面$\\alpha$, 直线$l_2\\parallel$平面$\\alpha$, 则$l_1\\parallel l_2$}{若直线$l_1$上有两个点到平面$\\alpha$的距离相等, 则$l_1\\parallel \\alpha$}{直线$l_2$与平面$\\alpha$所成角的取值范围是$(0, \\dfrac{\\pi}{2})$}{若直线$l_1 \\perp$平面$\\alpha$, 直线$l_2 \\perp$平面$\\alpha$, 则$l_1\\parallel l_2$}",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题14",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040478": {
"id": "040478",
"content": "已知$\\overrightarrow {a}$、$\\overrightarrow {b}$是平面内两个互相垂直的单位向量, 若向量$\\overrightarrow {c}$满足$(\\overrightarrow {c}-\\overrightarrow {a}) \\cdot(\\overrightarrow {c}-\\overrightarrow {b})=0$, 则$|\\overrightarrow {c}|$的最大值是\\bracket{20}\n\\fourch{$1$}{$2$}{$\\sqrt{2}$}{$\\dfrac{\\sqrt{2}}{2}$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题15",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040479": {
"id": "040479",
"content": "已知$f(x)=\\begin{cases}|\\log _3 x|, & 0<x<3, \\\\ \\sin (\\dfrac{\\pi}{6} x),& 3 \\leq x \\leq 15,\\end{cases}$ 若存在实数$x_1$、$x_2$、$x_3$、$x_4$满足$f(x_1)=f(x_2)=f(x_3)=f(x_4)$, 其中$x_1<x_2<x_3<x_4$, 则$x_1 x_2 x_3 x_4$的取值范围是\\bracket{20}.\n\\fourch{$(60,96)$}{$(45,72)$}{$(30,48)$}{$(15,24)$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题16",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040480": {
"id": "040480",
"content": "如图, 在直三棱柱$ABC-A_1B_1C_1$中, 底面$\\triangle ABC$是等腰直角三角形, $AC=BC=AA_1=2$, $D$为侧棱$AA_1$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below] {$C$} coordinate (C);\n\\draw (2,0,0) node [right] {$B$} coordinate (B);\n\\draw (0,0,2) node [left] {$A$} coordinate (A);\n\\draw (0,2,0) node [above] {$C_1$} coordinate (C_1);\n\\draw (2,2,0) node [right] {$B_1$} coordinate (B_1);\n\\draw (0,2,2) node [left] {$A_1$} coordinate (A_1);\n\\draw ($(A)!0.5!(A_1)$) node [left] {$D$} coordinate (D);\n\\draw (A)--(B)--(B_1)--(C_1)--(A_1)--cycle(A_1)--(B_1);\n\\draw [dashed] (A)--(C)--(B)(C)--(C_1)(C_1)--(D)--(C)(D)--(B_1)--(C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $BC \\perp$平面$ACC_1A_1$;\\\\\n(2) 求二面角$B_1-CD-C_1$的大小.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题17",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040481": {
"id": "040481",
"content": "已知$f(x)=2 \\sin x \\cos x+2 \\cos ^2 x$.\\\\\n(1) 求函数$f(x)$的单调增区间;\\\\\n(2) 将函数$y=f(x)$图像向右平移$\\dfrac{\\pi}{4}$个单位后, 得到函数$y=g(x)$的图像, 求方程$g(x)=1$的解集.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题18",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040482": {
"id": "040482",
"content": "如图, 一智能扫地机器人在$A$处发现位于它正西方向的$B$处和北偏东$30^{\\circ}$方向上的$C$处分别有需要清扫的垃圾, 红外线感应测量发现机器人到$B$的距离比到$C$的距离少$0.4 m$, 于是选择沿$A \\to B \\to C$路线清扫. 已知智能扫地机器人的直线行走速度为$0.2 \\text{m} / \\text{s}$, 忽略机器人吸入垃圾及在$B$处旋转所用时间, $10$秒钟完成了清扫任务.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 2]\n\\draw (0,0) node [right] {$A$} coordinate (A);\n\\draw (-0.6,0) node [left] {$B$} coordinate (B);\n\\draw (60:1) node [right] {$C$} coordinate (C);\n\\draw (A)--(B)--(C)--cycle;\n\\draw (-0.6,0.6) coordinate (T);\n\\draw [->] (T) --++ (0.3,0) node [right] {东};\n\\draw [->] (T) --++ (0,0.3) node [above] {北};\n\\end{tikzpicture}\n\\end{center}\n(1) $B$、$C$两处垃圾的距离是多少?\\\\\n(2) 智能扫地机器人此次清扫行走路线的夹角$\\angle ABC$是多少?",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题19",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040483": {
"id": "040483",
"content": "如图, 设$F$是椭圆$\\dfrac{x^2}{3}+\\dfrac{y^2}{4}=1$的下焦点, 直线$y=k x-4$($k>0$)与椭圆相交于$A$、$B$两点, 与$y$轴交于$P$点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.5]\n\\draw [->] (-3,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-5) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\draw (O) ellipse ({sqrt(3)} and 2);\n\\draw (0,-1) node [left] {$F$} coordinate (F);\n\\draw (0,-4) node [left] {$P$} coordinate (P);\n\\draw ({3*sqrt(5)/8},{-7/4}) node [below right] {$A$} coordinate (A);\n\\draw ($(P)!2!(A)$) node [right] {$B$} coordinate (B);\n\\draw ($(P)!-0.2!(B)$) -- ($(B)!-0.2!(P)$);\n\\draw (A)--(F)--(B);\n\\end{tikzpicture}\n\\end{center}\n(1) 若$\\overrightarrow{PA}=\\overrightarrow{AB}$, 求$k$的值;\\\\\n(2) 求证: $\\angle AFP=\\angle BFO$;\\\\\n(3) 求$\\triangle ABF$面积的最大值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题20",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040484": {
"id": "040484",
"content": "已知正项数列$\\{a_n\\}$、$\\{b_n\\}$满足: 对任意$n \\in \\mathbf{N}$, $n\\ge 1$都有$a_n$、$b_n$、$a_{n+1}$成等差数列, $b_n$、$a_{n+1}$、$b_{n+1}$成等比数列, 且$a_1=10$, $a_2=15$.\\\\\n(1) 求证: 数列$\\{\\sqrt{b_n}\\}$是等差数列;\\\\\n(2) 求数列$\\{a_n\\}$、$\\{b_n\\}$的通项公式;\\\\\n(3) 设$S_n=\\dfrac{1}{a_1}+\\dfrac{1}{a_2}+\\cdots+\\dfrac{1}{a_n}$, 如果对任意正整数$n$, 不等式$2 a S_n<2-\\dfrac{b_n}{a_n}$恒成立, 求实数$a$的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中高三数学卓越测试(2022303)试题21",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040485": {
"id": "040485",
"content": "设$a$、$b$、$c$是互不相等的实数, 则满足条件$\\{a, b\\} \\cup A=\\{a, b, c\\}$的所有集合$A$有\\blank{50}个.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题1",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040486": {
"id": "040486",
"content": "已知复数$z=(1+2 \\mathrm{i})(3-\\mathrm{i})$, 则$\\dfrac{1}{z}$对应的点在第\\blank{50}象限.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题2",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040487": {
"id": "040487",
"content": "若扇形的弧长和面积都是$4$, 那么这个扇形的圆心角的弧度数是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题3",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040488": {
"id": "040488",
"content": "首项为$1$, 公比为$-\\dfrac{1}{2}$的无穷等比数列$\\{a_n\\}$的各项和为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题4",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040489": {
"id": "040489",
"content": "已知数据$x_1, x_2, x_3, \\cdots, x_8$的方差为$16$, 则数据$3 x_1+1$、$3 x_2+1$、$\\cdots$、$3 x_8+1$的标准差为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题5",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040490": {
"id": "040490",
"content": "若$(x^2-\\dfrac{2}{x^3})^5$展开式中的常数项为\\blank{50}(用数字作答).",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题6",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040491": {
"id": "040491",
"content": "已知函数$f(x)=\\log _a(x+2)-2$($a>0$且$a \\neq 1)$的图像恒过定点$A$, 若点$A$在一次函数$y=m x-n$的图像上, 其中$m, n>0$, 则$\\dfrac{1}{m}+\\dfrac{1}{n}$的最小值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题7",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040492": {
"id": "040492",
"content": "某校数学兴趣小组给一个底面边长互不相等的直四棱柱容器的侧面和下底面染色, 提出如下的``四色问题'': 要求相邻两个面不得使用同一种颜色, 现有$4$种颜色可以选择, 则不同的染色方案有\\blank{50}种.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题8",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040493": {
"id": "040493",
"content": "有一种卫星接收天线, 其曲面与轴截面的交线为抛物线的一部分, 已知该卫星接收天线的口径$AB=6$, 深度$MO=2$, 信号处理中心$F$位于焦点处, 以顶点$O$为坐标原点, 建立如图所示的平面直角坐标系$xOy$, 若$P$是该抛物线上一点, 点$Q(\\dfrac{15}{8}, 2)$, 则$|PF|+|PQ|$的最小值为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.3]\n\\draw [->] (-1,0) -- (5,0) node [below] {$x$};\n\\draw [->] (0,-4) -- (0,4) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -3:3, samples = 100] plot ({\\x*\\x/4.5},\\x);\n\\draw [dashed, domain = -4:-3, samples = 100] plot ({\\x*\\x/4.5},\\x);\n\\draw [dashed, domain = 3:4, samples = 100] plot ({\\x*\\x/4.5},\\x);\n\\draw (2,3) node [above] {$A$} coordinate (A);\n\\draw (2,-3) node [below] {$B$} coordinate (B);\n\\draw (2,0) node [below right] {$M$} coordinate (M);\n\\draw (1.25,0) node [below] {$F$} coordinate (F);\n\\filldraw (F) circle (0.1);\n\\draw [dashed] (A)--(B);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题9",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040494": {
"id": "040494",
"content": "$y=\\sin x+\\sin 2 x$在$(-a, a)$上恰有$5$个零点, 则实数$a$的最大值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题10",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040495": {
"id": "040495",
"content": "设向量$\\overrightarrow{OA}, \\overrightarrow{OB}$满足$|\\overrightarrow{OA}|=|\\overrightarrow{OB}|=2$, $\\overrightarrow{OA} \\cdot \\overrightarrow{OB}=2$, 若$m, n \\in \\mathbf{R}$, $m+n=1$, 则$|m \\overrightarrow{AB}|+|\\dfrac{1}{2} \\overrightarrow{BO}-n \\overrightarrow{BA}|$的最小值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题11",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040496": {
"id": "040496",
"content": "函数$f(x)=\\begin{cases}-3 x,& x<0, \\\\ x^2-1,& x \\geq 0.\\end{cases}$ 若方程$f(x)+3 \\sqrt{1-x^2}+|f(x)-3 \\sqrt{1-x^2}|-2 a x-6=0$有三个根, 且$x_1<x_2<x_3$, $x_2$是$x_1$和$x_3$的等差中项, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题12",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040497": {
"id": "040497",
"content": "已知$a, b \\in \\mathbf{R}$, 则``$\\sqrt{a}>\\sqrt{b}$''是``$\\ln a>\\ln b$''的\\bracket{20}条件.\n\\fourch{充分不必要}{必要不充分}{充要}{既不充分也不必要}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题13",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040498": {
"id": "040498",
"content": "在$\\triangle ABC$中, 角$A$、$B$、$C$所对的边分别为$a$、$b$、$c$, 且$b^2+c^2=a^2+b c$. 若$\\sin B \\sin C=\\sin ^2A$, 则$\\triangle ABC$的形状是\\bracket{20}.\n\\fourch{等腰且非等边三角形}{直角三角形}{等边三角形}{等腰直角三角形}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题14",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040499": {
"id": "040499",
"content": "在棱长为$1$的正方体$ABCD-A_1B_1C_1D_1$中, 动点$P$在棱$A_1B_1$上, 动点$Q$在线段$BC_1$上, 若$A_1P=\\lambda$, $BQ=\\mu$, 则三棱锥$D_1-APQ$的体积\\bracket{20}.\n\\fourch{与$\\lambda$无关, 与$\\mu$有关}{与$\\lambda$有关, 与$\\mu$无关}{与$\\lambda, \\mu$都有关}{与$\\lambda, \\mu$都无关}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题15",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040500": {
"id": "040500",
"content": "已知数列$\\{a_n\\}$是各项为正数的等比数列, 公比为$q$, 在$a_1, a_2$之间插入$1$个数, 使这$3$个数成等差数列, 记公差为$d_1$; 在$a_2, a_3$之间插入$2$个数, 使这$4$个数成等差数列, 公差为$d_2$, $\\cdots$, 在$a_n, a_{n+1}$之间插入$n$个数, 使这$n+2$个数成等差数列, 公差为$d_n$, 则\\bracket{20}.\n\\twoch{当$0<q<1$时, 数列$\\{d_n\\}$单调递减}{当$q>1$时, 数列$\\{d_n\\}$单调递增}{当$d_1>d_2$时, 数列$\\{d_n\\}$单调递减}{当$d_1<d_2$时, 数列$\\{d_n\\}$单调递增}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题16",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040501": {
"id": "040501",
"content": "如图, 在三棱锥$P-ABC$中, 平面$PAB \\perp$平面$ABC$, $PA=2 \\sqrt{2}$, $PB=\\sqrt{2}$, $AB=\\sqrt{6}$, $AC \\perp PC$, $D$是棱$PC$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw ({sqrt(6)},0,0) node [right] {$B$} coordinate (B);\n\\draw (B) ++ (0,{sqrt(2)},0) node [above] {$P$} coordinate (P);\n\\draw (A) ++ ({sqrt(6)/2},0,{sqrt(6)/2}) node [below] {$C$} coordinate (C);\n\\draw ($(C)!0.5!(P)$) node [above] {$D$} coordinate (D);\n\\draw (A)--(C)--(B)--(P)--cycle(P)--(C);\n\\draw (A)--(D)--(B);\n\\draw [dashed] (A)--(B);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $BC \\perp AC$;\\\\\n(2) 若$AC=\\sqrt{3}$, 求直线$BC$与平面$ADB$所成角的正弦值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题17",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040502": {
"id": "040502",
"content": "为了促进地方经济的快速发展, 国家鼓励地方政府实行积极灵活的人才引进政策, 被引进的人才, 可享受地方的福利待遇, 发放高标准的安家补贴费和生活津贴. 某市政府从本年度的$1$月份开始进行人才招聘工作, 参加报名的人员通过笔试和面试两个环节的审查后, 符合一定标准的人员才能被录用. 现对该市$1\\sim 4$月份的报名人员数和录用人才数(单位: 千人)进行统计, 得到如下表格.\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|}\n\\hline 月份 & 1 月份 & 2 月份 & 3 月份 & 4 月份 \\\\\n\\hline 报名人员数$x /$千人 & 3.5 & 5 & 6.5 & 7 \\\\\n\\hline 录用人才数$y /$千人 & 0.2 & 0.33 & 0.4 & 0.47 \\\\\n\\hline\n\\end{tabular} \n\\end{center}\n(1) 求出$y$关于$x$的经验回归方程;\\\\\n(2) 假设该市对被录用的人才每人发放$2$万元的生活津贴\\\\\n(i) 若该市$5$月份报名人员数为$8000$人, 试估计该市对$5$月份招聘的人才需要发放的生活津贴的总金额;\\\\\n(ii) 假设在参加报名的人员中, 小王和小李两人被录用的概率分别为$p, 3p-1$. 若两人的生活津贴之和的均值不超过$3$万元, 求$p$的取值范围.\\\\\n附: 经验回归方程$\\hat{y}=\\hat{a}+\\hat{b} x$中, 斜率和截距的最小二乘法估计公式分别为$\\hat{b}=\\dfrac{\\displaystyle\\sum_{i=1}^n x_i y_i-n \\overline{x}\\overline{y}}{\\displaystyle\\sum_{i=1}^n x_i^2-n \\overline {x}^2}$, $\\hat{a}=\\overline {y}-\\hat{b} \\overline {x}$; $\\displaystyle\\sum_{i=1}^4 x_i^2=128.5$, $\\displaystyle\\sum_{i=1}^4 x_i y_i=8.24$.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题18",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040503": {
"id": "040503",
"content": "已知函数$f(x)=\\cos ^2 x+\\sin x \\cos x-\\dfrac{1}{2}$, 其中$x \\in \\mathbf{R}$.\\\\\n(1) 求不等式$f(x) \\geq \\dfrac{1}{2}$的解集;\\\\\n(2) 若函数$g(x)=\\dfrac{\\sqrt{2}}{2} \\sin (2 x+\\dfrac{3 \\pi}{4})$, 且对任意的$0 \\leq x_1<x_2 \\leq t$, 恒有$f(x_1)-f(x_2)<g(x_1)-g(x_2)$成立, 求实数$t$的最大值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题19",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040504": {
"id": "040504",
"content": "已知直线$l: y=-\\dfrac{1}{2} x$为双曲线$C: \\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=1$($a>0$, $b>0$)的一条渐近线, 且双曲线$C$经过点$(2 \\sqrt{2}, 1)$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.3]\n\\draw [->] (-10,0) -- (10,0) node [below] {$x$};\n\\draw [->] (0,-5) -- (0,5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [dashed] (10,5) -- (-10,-5) (10,-5) -- (-10,5);\n\\draw [domain = -10:{-2*sqrt(2)}, samples = 100] plot (\\x,{sqrt(\\x*\\x/4-2)});\n\\draw [domain = -10:{-2*sqrt(2)}, samples = 100] plot (\\x,{-sqrt(\\x*\\x/4-2)});\n\\draw [domain = {2*sqrt(2)}:10, samples = 100] plot (\\x,{sqrt(\\x*\\x/4-2)});\n\\draw [domain = {2*sqrt(2)}:10, samples = 100] plot (\\x,{-sqrt(\\x*\\x/4-2)}); \n\\end{tikzpicture}\n\\end{center}\n(1) 求双曲线$C$的方程;\\\\\n(2) 设直线$l: x=t y+4$与$C$交于$M, N$, 三角形$OMN$面积为$S$, 判断: 是否存在$t$使得$S=8 \\sqrt{15}$成立? 若存在, 求出$t$的值, 否则说明理由;\\\\\n(3) 设$A, B$是双曲线右支上两点, 若直线$l$上存在点$P$, 使得$\\triangle ABP$为正三角形, 求直线$AB$的斜率的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题20",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"040505": {
"id": "040505",
"content": "已知函数$f(x)=a x$($a \\in \\mathbf{R}$), $g(x)=\\cos x$.\\\\\n(1) 分别写出函数$y=f(g(x))$与$y=g(f(x))$的导函数;\\\\\n(2) 当$x \\in[\\pi,+\\infty)$时, 若不等式$f(x-\\pi) \\leq g(\\dfrac{\\pi}{2}-x)$恒成立, 求实数$a$的取值范围;\\\\\n(3) 令函数$h(x)=f(x)+g(x)$, $x \\in[0, \\pi]$, 若$y=h(x)$恰有两个极值点, 记极大值和极小值分别为$m, n$, 求$2 m-n$的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "23届交大附中模拟卷试题21",
"edit": [
"20230401\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
}
}