添加K0108, K0207基础知识梳理至数据库
This commit is contained in:
parent
9818c64b2d
commit
8a8d2636e4
|
|
@ -458,5 +458,47 @@
|
||||||
"K0226005B"
|
"K0226005B"
|
||||||
],
|
],
|
||||||
"content": "若$y=f(x)$, $x\\in D$是奇函数, 并且它有反函数$y=f^{-1}(x)$, $x\\in f(D)$, 则其反函数是\\blank{30}函数.\\\\\n 这是因为对任意$x_0\\in f(D)$, 存在$t_0\\in$\\blank{30}, 使得$x_0=$\\blank{40}. 因$y=f(x)$是\\blank{50}, 故$-t_0\\in$\\blank{30}, 且$-x_0=$\\blank{30}, 从而$-x_0\\in$\\blank{30}, 并且\\blank{30}$=-t_0=$\\blank{30}."
|
"content": "若$y=f(x)$, $x\\in D$是奇函数, 并且它有反函数$y=f^{-1}(x)$, $x\\in f(D)$, 则其反函数是\\blank{30}函数.\\\\\n 这是因为对任意$x_0\\in f(D)$, 存在$t_0\\in$\\blank{30}, 使得$x_0=$\\blank{40}. 因$y=f(x)$是\\blank{50}, 故$-t_0\\in$\\blank{30}, 且$-x_0=$\\blank{30}, 从而$-x_0\\in$\\blank{30}, 并且\\blank{30}$=-t_0=$\\blank{30}."
|
||||||
|
},
|
||||||
|
"B00065": {
|
||||||
|
"lesson": "K0108",
|
||||||
|
"objs": [
|
||||||
|
"K0108001B"
|
||||||
|
],
|
||||||
|
"content": "用等号``$=$''把两个数量关系连接起来, 所得的式子称为\\blank{50}."
|
||||||
|
},
|
||||||
|
"B00066": {
|
||||||
|
"lesson": "K0108",
|
||||||
|
"objs": [
|
||||||
|
"K0108001B"
|
||||||
|
],
|
||||||
|
"content": "对于实数而言, 等式明显具有以下性质: \\\\\n(1) \\blank{20}性: 设 $a$、$b$、$c \\in \\mathbf{R}$, 如果 $a=b$, $b=c$, 那么\\blank{50}.\\\\\n(2) \\blank{20}性质: 设 $a$、$b$、$c \\in \\mathbf{R}$, 如果 $a=b$, 那么\\blank{80}.\\\\\n(3) \\blank{20}性质: 设 $a$、$b$、$c \\in \\mathbf{R}$, 如果 $a=b$, 那么\\blank{80}."
|
||||||
|
},
|
||||||
|
"B00067": {
|
||||||
|
"lesson": "K0108",
|
||||||
|
"objs": [
|
||||||
|
"K0108002B"
|
||||||
|
],
|
||||||
|
"content": "含有\\blank{50}的等式称为\\blank{50}; 使得方程两端相等的未知数的值, 称为\\blank{50}."
|
||||||
|
},
|
||||||
|
"B00068": {
|
||||||
|
"lesson": "K0207",
|
||||||
|
"objs": [
|
||||||
|
"K0207001B"
|
||||||
|
],
|
||||||
|
"content": "当指数 $a$ 固定, 等式\\blank{100}确定了变量\\blank{20}随变量\\blank{20}变化的规律, 称为指数为\\blank{20}的幂函数."
|
||||||
|
},
|
||||||
|
"B00069": {
|
||||||
|
"lesson": "K0207",
|
||||||
|
"objs": [
|
||||||
|
"K0207002B"
|
||||||
|
],
|
||||||
|
"content": "幂函数的定义域为\\blank{100}. 幂函数的定义域可以是不相同的, 它与\\blank{50}有关."
|
||||||
|
},
|
||||||
|
"B00070": {
|
||||||
|
"lesson": "K0207",
|
||||||
|
"objs": [
|
||||||
|
"K0207003B"
|
||||||
|
],
|
||||||
|
"content": "请依次作出幂函数 $y=x^{\\frac{1}{2}}$, $y=x^3$, $y=x^{-\\frac{2}{3}}$ 的大致图像.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Reference in New Issue