diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 67dd88e0..46a579b5 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -113201,7 +113201,9 @@ "20220701\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032063" + ], "remark": "", "space": "4em", "unrelated": [] @@ -352500,7 +352502,9 @@ "20221215\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032075" + ], "remark": "", "space": "4em", "unrelated": [] @@ -357785,7 +357789,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032039" + ], "remark": "", "space": "", "unrelated": [] @@ -357986,7 +357992,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032042" + ], "remark": "", "space": "4em", "unrelated": [] @@ -358597,7 +358605,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032047" + ], "remark": "", "space": "", "unrelated": [] @@ -358669,7 +358679,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032048" + ], "remark": "", "space": "", "unrelated": [] @@ -359607,7 +359619,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032049" + ], "remark": "", "space": "4em", "unrelated": [] @@ -361608,7 +361622,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032069" + ], "remark": "", "space": "", "unrelated": [] @@ -365418,7 +365434,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032053" + ], "remark": "", "space": "", "unrelated": [] @@ -365483,7 +365501,7 @@ }, "013062": { "id": "013062", - "content": "将直线$l_1: n x+y-n=0$, $l_2: x+n y-n=0$($n \\in \\mathbf{N}$, $n \\geq 2$), $x$轴及$y$轴围成的封闭区域的面积记为$S_n$, 则$\\displaystyle\\lim_{n\\to\\infty} S_n=$\\blank{50}.", + "content": "将直线$l_1: n x+y-n=0$, $l_2: x+n y-n=0$($n \\in \\mathbf{N}$, $n \\geq 2$), $x$轴及$y$轴围成的封闭区域的面积记为$S_n$, 则$\\displaystyle\\lim_{n\\to+\\infty} S_n=$\\blank{50}.", "objs": [], "tags": [ "第七单元", @@ -365610,7 +365628,7 @@ }, "013066": { "id": "013066", - "content": "已知集合$M$是平面直角坐标系中方程为$x-2 k y+k^2=0$($k \\in \\mathbf{R}$)的直线的集合, 集合$S$是满足以下条件的点的集合: 对于集合$S$中的每一个点, 集合$M$中有且仅有一条直线经过该点.\\\\\n(1) 判断下列直线是否为集合$M$中的直线: $l_1: x-y+1=0$, $l_2: x-2 y+1=0$;\\\\\n(2) 判断下列各点是否为集合$S$中的点: $D(2,1)$, $E(1,1)$;\\\\\n(3) 求集合$S$中的点的轨迹方程.", + "content": "已知集合$M$是平面直角坐标系中方程为$x-2 k y+k^2=0$($k \\in \\mathbf{R}$)的直线的集合, 集合$S$是满足以下条件的点的集合: 对于集合$S$中的每一个点, 集合$M$中有且仅有一条直线经过该点.\\\\\n(1) 分别判断下列直线是否为集合$M$中的直线: $l_1: x-y+1=0$, $l_2: x-2 y+1=0$;\\\\\n(2) 分别判断下列各点是否为集合$S$中的点: $D(2,1)$, $E(1,1)$;\\\\\n(3) 求集合$S$中的点的轨迹方程.", "objs": [], "tags": [ "第七单元", @@ -366037,7 +366055,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032057" + ], "remark": "", "space": "", "unrelated": [] @@ -366187,7 +366207,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032060" + ], "remark": "", "space": "", "unrelated": [] @@ -366528,7 +366550,7 @@ }, "013096": { "id": "013096", - "content": "已知定圆$C_1:(x-7)^2+y^2=4$, $C_2:(x+7)^2+y^2=25$, 动圆$M$与两定圆外切, 则动圆圆心$M$的轨迹方程是\\blank{50}.", + "content": "已知定圆$C_1:(x-7)^2+y^2=4$, $C_2:(x+7)^2+y^2=25$, 动圆$M$与两定圆均外切, 则动圆圆心$M$的轨迹方程是\\blank{50}.", "objs": [], "tags": [ "第七单元", @@ -366564,7 +366586,7 @@ }, "013097": { "id": "013097", - "content": "若$F$是双曲线$x^2-y^2=1$的左焦点, 点$P$在第三象限的双曲线上, 则直线$FP$的倾斜角的取值范围是\\blank{50}.", + "content": "若$F$是双曲线$x^2-y^2=1$的左焦点, 点$P$在第三象限且在该双曲线上, 则直线$FP$的倾斜角的取值范围是\\blank{50}.", "objs": [], "tags": [ "第七单元", @@ -366636,7 +366658,7 @@ }, "013099": { "id": "013099", - "content": "记椭圆$E_n: \\dfrac{x^2}{4}+\\dfrac{n y^2}{4 n+1}=1$, 其中$n=1,2, \\cdots$. 当点$(x, y)$分别在$E_1, E_2, \\cdots$上时, $x+y$的最大值分别是$M_1, M_2, \\cdots$, 则$\\displaystyle\\lim_{n\\to\\infty} M_n=$\\blank{50}.", + "content": "记椭圆$E_n: \\dfrac{x^2}{4}+\\dfrac{n y^2}{4 n+1}=1$, 其中$n$为正整数. 当点$(x, y)$分别在$E_1, E_2, \\cdots$上时, $x+y$的最大值分别是$M_1, M_2, \\cdots$, 则$\\displaystyle\\lim_{n\\to +\\infty} M_n=$\\blank{50}.", "objs": [], "tags": [ "第七单元", @@ -367177,7 +367199,7 @@ }, "013118": { "id": "013118", - "content": "若直线$y=x+k$与曲线$y=\\sqrt{2-x^2}$相交于两点, 则实数$k$的取值范围为\\blank{50}.", + "content": "若直线$y=x+k$与曲线$y=\\sqrt{2-x^2}$恰有两个公共点, 则实数$k$的取值范围为\\blank{50}.", "objs": [], "tags": [ "第七单元", @@ -367377,7 +367399,7 @@ }, "013124": { "id": "013124", - "content": "已知直线$l: x-a y+a=0$与双曲线$x^2-y^2=1$的左支交于$A, B$两点, 过弦$AB$的中点$Q$与点$P(-2,1)$的直线交$y$轴于$(0, b)$点. 当$a$变化时, 求实数$b$的取值范围.", + "content": "已知直线$l: x-a y+a=0$与双曲线$x^2-y^2=1$的左支交于$A, B$两点, 过弦$AB$的中点$Q$与点$P(-2,1)$的直线$PQ$交$y$轴于$(0, b)$点. 当$a$变化时, 求实数$b$的取值范围.", "objs": [], "tags": [ "第七单元", @@ -367600,7 +367622,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032062" + ], "remark": "", "space": "", "unrelated": [] @@ -367788,7 +367812,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032058" + ], "remark": "", "space": "", "unrelated": [] @@ -368867,7 +368893,9 @@ "20230118\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032050" + ], "remark": "", "space": "", "unrelated": [] @@ -383633,7 +383661,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032045" + ], "remark": "", "space": "4em", "unrelated": [] @@ -383768,7 +383798,7 @@ }, "013758": { "id": "013758", - "content": "设$a, b$是两个实数, $A=\\{(x, y) | x=n, y=n a+b, n \\in \\mathbf{Z}\\}$, $B=\\{(x, y) | x=m, \\ y=3(m^2+5),\\ m \\in \\mathbf{Z}\\}$, $C=\\{x \\cdot y | x^2+y^2 \\leq 144\\}$, 讨论是否存在$a, b$使得$A \\cap B \\neq \\varnothing$且$(a, b) \\in C$.", + "content": "设$a, b$是两个实数, $A=\\{(x, y) | x=n, y=n a+b, n \\in \\mathbf{Z}\\}$, $B=\\{(x, y) | x=m, \\ y=3(m^2+5),\\ m \\in \\mathbf{Z}\\}$, $C=\\{(x, y) | x^2+y^2 \\leq 144\\}$, 讨论是否存在$a, b$使得$A \\cap B \\neq \\varnothing$且$(a, b) \\in C$.", "objs": [], "tags": [ "第一单元", @@ -388805,7 +388835,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032070" + ], "remark": "", "space": "4em", "unrelated": [] @@ -389022,7 +389054,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032054" + ], "remark": "", "space": "", "unrelated": [] @@ -389116,7 +389150,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032055" + ], "remark": "", "space": "", "unrelated": [] @@ -391016,7 +391052,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032052" + ], "remark": "", "space": "4em", "unrelated": [] @@ -392011,7 +392049,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032076" + ], "remark": "", "space": "4em", "unrelated": [] @@ -392460,7 +392500,9 @@ "20230128\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032077" + ], "remark": "", "space": "4em", "unrelated": [] @@ -393069,7 +393111,9 @@ "20230131\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032040" + ], "remark": "", "space": "4em", "unrelated": [] @@ -393889,7 +393933,9 @@ "20230131\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032043" + ], "remark": "", "space": "4em", "unrelated": [] @@ -393989,7 +394035,9 @@ "20230131\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032044" + ], "remark": "", "space": "", "unrelated": [] @@ -394361,7 +394409,9 @@ "20230131\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032046" + ], "remark": "", "space": "4em", "unrelated": [] @@ -399628,7 +399678,9 @@ "20230202\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032056" + ], "remark": "", "space": "4em", "unrelated": [] @@ -401210,7 +401262,9 @@ "20230209\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032051" + ], "remark": "", "space": "", "unrelated": [] @@ -402608,7 +402662,9 @@ "20230209\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032064" + ], "remark": "", "space": "", "unrelated": [] @@ -402745,7 +402801,9 @@ "20230209\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032065" + ], "remark": "", "space": "4em", "unrelated": [] @@ -404309,7 +404367,8 @@ ], "same": [], "related": [ - "023289" + "023289", + "032068" ], "remark": "", "space": "", @@ -404404,7 +404463,9 @@ "20230221\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032067" + ], "remark": "", "space": "4em", "unrelated": [] @@ -406001,7 +406062,9 @@ "20230221\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032078" + ], "remark": "", "space": "4em", "unrelated": [] @@ -576217,7 +576280,9 @@ "20230101\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032072" + ], "remark": "", "space": "4em", "unrelated": [] @@ -652895,7 +652960,9 @@ "20221029\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032074" + ], "remark": "", "space": "4em", "unrelated": [] @@ -672627,7 +672694,8 @@ ], "same": [], "related": [ - "014108" + "014108", + "032041" ], "remark": "", "space": "", @@ -672909,7 +672977,8 @@ ], "same": [], "related": [ - "013088" + "013088", + "032059" ], "remark": "", "space": "", @@ -672947,7 +673016,8 @@ ], "same": [], "related": [ - "013100" + "013100", + "032061" ], "remark": "", "space": "", @@ -673026,7 +673096,8 @@ "same": [], "related": [ "014003", - "031388" + "031388", + "032066" ], "remark": "", "space": "", @@ -677246,7 +677317,8 @@ ], "same": [], "related": [ - "030409" + "030409", + "032073" ], "remark": "", "space": "", @@ -692959,6 +693031,1076 @@ "space": "4em", "unrelated": [] }, + "032039": { + "id": "032039", + "content": "已知集合$A=\\{y | y=x^2,\\ x \\in \\mathbf{R}\\}$, $B=\\{y | y=2^x,\\ x \\in \\mathbf{R}\\}$. 则$A \\cap B=$\\blank{50}.", + "objs": [], + "tags": [ + "第二单元", + "第一单元", + "2023届高三-第二轮复习讲义-01-集合与逻辑" + ], + "genre": "", + "ans": "$\\{y | y>0\\}$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012792" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032040": { + "id": "032040", + "content": "判断下列各题中甲是乙的什么条件, 并用相应序号填入空格内.(A.充分非必要条件、B.必要非充分条件、C.充要条件、D.既非充分又非必要条件).\\\\\n(1) 已知$\\triangle ABC$. 甲: $A>B$; 乙: $\\sin A>\\sin B$;\blank{50}\\\\\n(2) 已知$\\overrightarrow {a}$, $\\overrightarrow {b}$, $\\overrightarrow {c}$是非零的共面向量. 甲: $\\overrightarrow {a} \\cdot \\overrightarrow {b}=\\overrightarrow {b} \\cdot \\overrightarrow {c}$; 乙: $\\overrightarrow {a}=\\overrightarrow {c}$;\blank{50}\\\\\n(3) 已知函数$y=f(x)$的定义域为$\\mathbf{R}$, 且存在导函数$f'(x)$. 甲: $f'(x)>0$恒成立; 乙: $y=f(x)$是$\\mathbf{R}$上的严格增函数.\blank{50}", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-01-集合与逻辑" + ], + "genre": "4em", + "ans": "(1) C; (2) B; (3) A", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课01-20240121修改", + "edit": [ + "20230131\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014118" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032041": { + "id": "032041", + "content": "集合$A=\\{x | x^2-5 x-6=0\\}$, $B=\\{x | a x^2-x+6=0\\}$, 且$A \\cup B=A$. 则实数$a$的取值范围为\\blank{50}.", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-01-集合与逻辑" + ], + "genre": "", + "ans": "$\\{0\\}\\cup (\\dfrac 1{24},+\\infty)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课01-20230203修改-20240121修改", + "edit": [ + "20230131\t王伟叶", + "20230203\t朱敏慧", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014108", + "031223" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032042": { + "id": "032042", + "content": "设常数$m \\in \\mathbf{R}$, 集合$A=\\{x | \\dfrac{6}{x+1} \\geq 1\\}$, $B=\\{x | x^2-2 x+2 m<0\\}$. 若$A \\cup B=A$, 求$m$的取值范围.", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-01-集合与逻辑" + ], + "genre": "4em", + "ans": "$[-\\dfrac 32,+\\infty)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012799" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032043": { + "id": "032043", + "content": "已知$f(x)=2 \\lg x-1, g(x)=2 \\lg x-3$.\\\\\n(1) 求不等式$f(x)<3$的解集;\\\\\n(2) 求$|f(x)|+|g(x)|$的最小值.", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-02-等式与不等式" + ], + "genre": "4em", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课03-20240121修改", + "edit": [ + "20230131\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014153" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032044": { + "id": "032044", + "content": "若正数$a$、$b$满足$a b=1$, 则$\\dfrac{1}{2 a}+\\dfrac{1}{4 b}+\\dfrac{8}{a+2b}$的最小值为\\blank{50}.", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-02-等式与不等式" + ], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课03-20240121修改", + "edit": [ + "20230131\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014157" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032045": { + "id": "032045", + "content": "已知$a, b\\in (0,+\\infty)$, 且$a \\neq b$, $n$是正整数. 求证: $(a+b)(a^n+b^n)<2(a^{n+1}+b^{n+1})$.", + "objs": [], + "tags": [ + "第一单元", + "2023届高三-第二轮复习讲义-02-等式与不等式" + ], + "genre": "4em", + "ans": "证明略", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课03-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013752" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032046": { + "id": "032046", + "content": "用函数单调性的定义证明: 函数$y=\\log _2 \\dfrac{x-1}{x+1}$在区间$(1,+\\infty)$上是严格增函数.", + "objs": [], + "tags": [ + "第二单元", + "2023届高三-第二轮复习讲义-03-幂指对函数" + ], + "genre": "4em", + "ans": "证明略", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课04-20240121修改", + "edit": [ + "20230131\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014170" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032047": { + "id": "032047", + "content": "函数$d(x)=\\begin{cases}0, & x \\in \\mathbf{Q}, \\\\ 1, & x \\notin \\mathbf{Q},\\end{cases}$ 则$d(d(\\pi))=$\\blank{50}.", + "objs": [], + "tags": [ + "第二单元", + "2023届高三-第二轮复习讲义-04-函数的概念与性质" + ], + "genre": "", + "ans": "$0$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012824" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032048": { + "id": "032048", + "content": "已知函数$f(x)=\\begin{cases}x^2, & x \\geq 0,\\\\ -x^2, & x<0.\\end{cases}$ 若$f(2-a^2)>f(a)$, 则实数$a$的取值范围是\\blank{50}.", + "objs": [], + "tags": [ + "第二单元", + "2023届高三-第二轮复习讲义-04-函数的概念与性质" + ], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012826" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032049": { + "id": "032049", + "content": "设$a\\in \\mathbf{R}$,关于$x$的方程$x^2+2 x=(a+2) x+2$的两个实根为$x_1$、$x_2$, 记$M=|x_1-x_2|$.\\\\\n(1) 当$a\\in [-1,1]$时,求$M$的最大值;\\\\\n(2) 是否存在实数$m$, 使得不等式$m^2+t m+1 \\geq M$对任意$a \\in[-1,1]$及任意$t \\in[-1,1]$恒成立? 若存在, 求$m$的取值范围; 若不存在, 请说明理由.", + "objs": [], + "tags": [ + "第一单元", + "第二单元", + "2023届高三-四月错题重做-02-函数二", + "2023届高三-四月错题重做-02-易错题-函数2", + "2023届高三-第二轮复习讲义-04-函数的概念与性质" + ], + "genre": "4em", + "ans": "(1)暂缺;(2)$(-\\infty,-2]\\cup [2,+\\infty)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012856" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032050": { + "id": "032050", + "content": "给出下列命题, 其中正确命题的所有序号是\\blank{50}.\\\\\n\\textcircled{1} 直线上有两点到平面的距离相等, 则此直线与平面平行;\\\\\n\\textcircled{2} 夹在两个平行平面间的两条异面线段(端点均在相应平面上)的中点连线平行于这两个平面;\\\\\n\\textcircled{3} $\\alpha$内存在不共线的三点到$\\beta$的距离相等, 则平面$\\alpha$与$\\beta$平行;\\\\\n\\textcircled{4} 垂直于同一个平面的两条直线是平行直线.", + "objs": [], + "tags": [ + "第六单元", + "2023届高三-第二轮复习讲义-09-立体几何综合" + ], + "genre": "", + "ans": "\\textcircled{2}\\textcircled{4}", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013178" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032051": { + "id": "032051", + "content": "如图, 在直径$AB=4$的半圆$O$内作一个内接直角三角形$ABC$, 使$\\angle BAC=30^{\\circ}$, 将图中阴影部分以直线$AB$为旋转轴旋转一周形成一个几何体, 则该几何体的体积为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\filldraw (0,0) node [left] {$O$} coordinate (O) circle (0.03);\n\\draw (0,1.5) node [above] {$A$} coordinate (A);\n\\draw (0,-1.5) node [below] {$B$} coordinate (B);\n\\draw (-30:1.5) node [right] {$C$} coordinate (C);\n\\fill [pattern = north east lines] (A)--(C) arc (-30:90:1.5);\n\\fill [pattern = north east lines] (B)--(C) arc (-30:-90:1.5);\n\\draw (A)--(B)--(C)--cycle;\n\\draw (A) arc (90:-90:1.5);\n\\draw pic [draw, \"$30^\\circ$\", angle eccentricity = 2] {angle = B--A--C};\n\\draw pic [draw, \"$60^\\circ$\", angle eccentricity = 1.5] {angle = C--B--A};\n\\end{tikzpicture}\n\\end{center}", + "objs": [], + "tags": [ + "第六单元", + "2023届高三-第二轮复习讲义-09-立体几何综合" + ], + "genre": "", + "ans": "$\\dfrac{10}3\\pi$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课15-20240121修改", + "edit": [ + "20230209\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014426" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032052": { + "id": "032052", + "content": "如图, 在四棱锥$P-ABCD$中, 已知$PA \\perp$平面$ABCD$, 且四边形$ABCD$为直角梯形, $\\angle ABC=\\angle BAD=\\dfrac{\\pi}{2}$, $PA=AD=2$, $AB=BC=1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [above right] {$A$} coordinate (A);\n\\draw (0,0,1) node [left] {$B$} coordinate (B);\n\\draw (B) ++ (1,0,0) node [below] {$C$} coordinate (C);\n\\draw (2,0,0) node [right] {$D$} coordinate (D);\n\\draw (0,2,0) node [above] {$P$} coordinate (P);\n\\draw ($(B)!0.5!(P)$) node [left] {$Q$} coordinate (Q);\n\\draw (P)--(B) (P)--(C) (P)--(D) (B)--(C)--(D) (Q)--(C);\n\\draw [dashed] (B)--(A)--(D) (A)--(P); \n\\end{tikzpicture}\n\\end{center}\n(1) 求四棱锥$P-ABCD$的表面积;\\\\\n(2) 若$P, A, C, D$四点在同一球面上, 求该球的体积.", + "objs": [], + "tags": [ + "第六单元", + "2023届高三-第二轮复习讲义-09-立体几何综合" + ], + "genre": "4em", + "ans": "(1) $\\dfrac 92+\\dfrac{\\sqrt{5}}2+\\sqrt{3}$; (2) $\\dfrac{8\\sqrt{2}}3\\pi$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课26-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014044" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032053": { + "id": "032053", + "content": "直线$2 x+3 y-1=0$的倾斜角是\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-11-直线与圆" + ], + "genre": "", + "ans": "$\\pi-\\arctan\\dfrac {2}{3}}$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013059" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032054": { + "id": "032054", + "content": "若$k,-1, b$三个实数按此顺序构成等差数列, 则直线$y=k x+b$必经过定点\\blank{50}.", + "objs": [], + "tags": [ + "第四单元", + "第七单元", + "2023届高三-第二轮复习讲义-11-直线与圆" + ], + "genre": "", + "ans": "$(1,-2)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课20-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013969" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032055": { + "id": "032055", + "content": "平面直角坐标系$xOy$中, 对于以点$(1,0)$为圆心且与直线$m x-y-2 m-1=0$($m \\in \\mathbf{R}$)相切的圆, 半径最大时圆的标准方程是\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-11-直线与圆" + ], + "genre": "", + "ans": "$(x-1)^2+y^2=2$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课20-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013972" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032056": { + "id": "032056", + "content": "已知圆$N: (x-2)^2+(y+1)^2=4$.\\\\\n(1) 直线$l$经过点$A(3,2)$, 且被圆$N$截得长为$2 \\sqrt{2}$的弦, 求直线$l$的方程;\\\\\n(2) 过点$B(3,0)$的直线$l$与圆$N$交于$P$、$Q$两点, 直接写出弦$PQ$最短和最长时其所在直线的方程;\\\\\n(3) 讨论圆$C: (x-a)^2+y^2=1$($a \\in \\mathbf{R}$)与圆$N$的位置关系.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-11-直线与圆" + ], + "genre": "4em", + "ans": "(1) $x-y-1=0$或$7x+2y-23=0$; (2) 弦$PQ$最短时, 所在直线的方程为$x+y-3=0$; 弦$PQ$最长时, 所在直线的方程为$x-y+3=0$; (3) 当$a=2$时, 两圆内切; 当$a\\in (2-2\\sqrt{2},2)\\cup (2,2+2\\sqrt{2})$时, 两圆相交; 当$a=2\\pm 2\\sqrt{2}$时, 两圆外切; 当$a\\in (-\\infty,2-2\\sqrt{2})\\cup (2+2\\sqrt{2},+\\infty)$时, 两圆外离", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课18-20240121修改", + "edit": [ + "20230202\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014366" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032057": { + "id": "032057", + "content": "设$m$是正实数, 若点$F(0,5)$是双曲线$\\dfrac{y^2}{m^2}-\\dfrac{x^2}{9}=1$的一个焦点, 则$m=$\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "$\\pm 4$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013079" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032058": { + "id": "032058", + "content": "已知点$M(x, y)$到点$F_1(-5,0)$和$F_2(5,0)$的距离差的绝对值是$8$, 则点$M$的轨迹方程为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "$\\dfrac{x^2}{16}-\\dfrac{y^2}{9}=1$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013137" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032059": { + "id": "032059", + "content": "过定点$F(4,0)$作直线$l$交$y$轴于$Q$点, 在$x$轴上存在一点$T$满足$\\overrightarrow{OT} \\perp \\overrightarrow{FQ}$, 延长$TQ$至$P$点, 使$\\overrightarrow{QT}=\\overrightarrow{PQ}$, 则动点$P$的轨迹方程为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "$y^2=16x", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20230214修改-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20230214\t吴惠群", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013088", + "031230" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032060": { + "id": "032060", + "content": "已知抛物线方程为$y^2=4x$, 过焦点$F$的直线与抛物线交于$A, B$两点, 以$AB$为直径的圆$M$与抛物线的准线$l$的位置关系为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "相切", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013083" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032061": { + "id": "032061", + "content": "抛物线$x^2=4 y$的焦点$F$, 过点$(0,-1)$作直线交抛物线于不同的两点$A, B$, 则弦$AB$的中点$M$的轨迹方程为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20230214修改-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20230214\t吴惠群", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013100", + "031231" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032062": { + "id": "032062", + "content": "若动点$(x, y)$在曲线$\\dfrac{x^2}{4}+y^2=1$上变化, 则$4 x+y^2$的最大值为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013131" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032063": { + "id": "032063", + "content": "双曲线$C_1:\\dfrac{x^2}4-\\dfrac{y^2}{b^2}=1$与圆$C_2:x^2+y^2=4+b^2 \\ (b>0)$交于点$A(x_A,y_A)$(第一象限), 曲线$\\Gamma$由所有在$C_1$或$C_2$上, 且满足$|x|>x_A$的点组成, $C_2$与$x$轴的左、右交点分别记作$F_1,F_2$.\\\\\n(1) 若$x_A=\\sqrt6$, 求$b$的值;\\\\\n(2) 若$b=\\sqrt5$, 点$P$在曲线$\\Gamma$上, 且在第一象限, $|PF_1|=8$, 求$\\angle F_1PF_2$;\\\\\n(3) 点$D(0,\\dfrac{b^2}2+2)$, 过该点的直线斜率为$-\\dfrac b2$的$l$和$\\Gamma$有且只有两个交点, 求$b^2$的取值范围.", + "objs": [ + "K0716002X", + "K0718001X" + ], + "tags": [ + "第七单元", + "双曲线", + "2023届高三-第二轮复习讲义-12-圆锥曲线" + ], + "genre": "4em", + "ans": "(1) $2$; (2) $\\arccos\\dfrac{11}{16}$; (3) ", + "solution": "", + "duration": -1, + "usages": [], + "origin": "上海2020年秋季高考试题20-20240121修改", + "edit": [ + "20220701\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "003629" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032064": { + "id": "032064", + "content": "若过点$O(0,0)$的直线$l$与抛物线$y^2=2 x$恰有一个公共点, 则直线$l$的方程为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-13-解析几何综合" + ], + "genre": "", + "ans": "$x=0$或$y=0$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课20-20240121修改", + "edit": [ + "20230209\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014478" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032065": { + "id": "032065", + "content": "设椭圆$\\Gamma: \\dfrac{x^2}{a^2}+y^2=1$($a>0$), $F_1$、$F_2$分别是椭圆$\\Gamma$的左、右焦点, 椭圆$\\Gamma$的离心率为$\\dfrac{\\sqrt{2}}{2}$, 直线$l$与椭圆$\\Gamma$交于不同的两点$A$、$B$.\\\\\n(1) 求椭圆$\\Gamma$的方程;\\\\\n(2) 已知直线$l$经过椭圆$\\Gamma$的右焦点$F_2$, $P$、$Q$是椭圆$\\Gamma$上两点, 四边形$ABQP$是菱形, 求直线$l$的方程.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-第二轮复习讲义-13-解析几何综合" + ], + "genre": "4em", + "ans": "(1) $\\dfrac{x^2}2+y^2=1$; (2) $y=\\pm\\sqrt{2}(x-1)$; (3) $(\\dfrac{\\sqrt{6}}3,0)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课20-20240121修改", + "edit": [ + "20230209\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014483" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032066": { + "id": "032066", + "content": "设抛物线$C: y^2=4 x$的焦点为$F$, 过$F$且斜率为$k(k>0)$的直线$l$与$C$交于$A$、$B$两点, $|AB|=8$. 则直线$l$的方程为\\blank{50}.", + "objs": [], + "tags": [ + "第七单元", + "2023届高三-四月错题重做-04-解析几何", + "2023届高三-第二轮复习讲义-13-解析几何综合" + ], + "genre": "", + "ans": "$y=x-1$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课22-20230214修改-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20230214\t吴惠群", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014003", + "031388", + "031233" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032067": { + "id": "032067", + "content": "某地区$2023$年产生的生活垃圾为$20$万吨, 其中$6$万吨垃圾以环保方式处理, 剩余$14$万吨垃圾以填埋方式处理. 预测显示: 在以$2023$年为第一年的未来十年内, 该地区每年产生的生活垃圾量比上一年增长$5 \\%$, 同时, 通过环保方式处理的垃圾量比上一年增加$1.5$万吨, 剩余的垃圾以填埋方式处理. 根据预测, 解答下列问题:\\\\\n(1) 求$2024$年至$2026$年, 该地区三年通过填埋方式处理的垃圾共计多少万吨? (结果精确到$0.1$万吨)\\\\\n(2) 该地区在哪一年通过环保方式处理的垃圾量首次超过这一年产生的生活垃圾量的$50 \\%$?", + "objs": [], + "tags": [ + "第四单元", + "2023届高三-第二轮复习讲义-14-等差数列和等比数列" + ], + "genre": "4em", + "ans": "(1) 约$39.2$吨; (2) 在$2025$年, 该地区通过环保方式处理的垃圾量首次超过这一年产生的生活垃圾量的$50\\%$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课22-20240121修改", + "edit": [ + "20230221\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014538" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032068": { + "id": "032068", + "content": "在等差数列$\\{a_n\\}$中, 公差为$2$, $11 a_5=5 a_8$, 则该数列前$n$项和$S_n$的最小值为\\blank{50}.", + "objs": [], + "tags": [ + "第四单元", + "2023届高三-第二轮复习讲义-14-等差数列和等比数列" + ], + "genre": "", + "ans": "$-2d$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课22-20240121修改", + "edit": [ + "20230221\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "023289", + "014535" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032069": { + "id": "032069", + "content": "数列$\\{a_n\\}$的通项公式$a_n=n \\cos \\dfrac{n \\pi}{2}+1$, 前$n$项和为$S_n$, 则$S_{2024}=$\\blank{50}.", + "objs": [], + "tags": [ + "第四单元", + "2023届高三-第二轮复习讲义-15-数列综合" + ], + "genre": "", + "ans": "$3018$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2022届高三第二轮复习讲义-20240121修改", + "edit": [ + "20230118\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012923" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032070": { + "id": "032070", + "content": "已知数列$\\{a_n\\}$中, $a_1=3$, $a_2=5$, $\\{a_n\\}$的前$n$项和为$S_n$, 且满足$S_n+S_{n-2}=2S_{n-1}+2^{n-1}$($n \\geq 3$).\\\\\n(1) 试求数列$\\{a_n\\}$的通项公式;\\\\\n(2) 令$b_n=\\dfrac{2^{n-1}}{a_n \\cdot a_{n+1}}$, $T_n$是数列$\\{b_n\\}$的前$n$项和, 证明: $T_n<\\dfrac{1}{6}$.", + "objs": [], + "tags": [ + "第四单元", + "2023届高三-第二轮复习讲义-15-数列综合" + ], + "genre": "4em", + "ans": "(1) $a_n=2^n+1$; (2) 证明略", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课19-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "013960" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032071": { + "id": "032071", + "content": "设函数$y=f_i(x)$($i=1,2,3$)的导数分别为$y'=f_i'(x)$($i=1,2,3$).\\\\\n(1) 若$f_1(x)=\\sqrt{x}$, $f_2(x)=\\sqrt[3]{x}$, $f_3(x)=\\dfrac{1}{\\sqrt{x}}$, 则\\\\$f_1'(x)=$\\blank{50}; $f_2'(x)=$\\blank{50}; $f_3'(x)=$\\blank{50}.\\\\\n(2) 若$f_1(x)=x^3 \\cdot \\mathrm{e}^x$, $f_2(x)=x \\ln x$, $f_3(x)=\\dfrac{x}{\\sin x}$, 则\\\\$f_1'(x)=$\\blank{50}; $f_2'(x)=$\\blank{50}; $f_3'(x)=$\\blank{50}.\\\\\n(3) 若$f_1(x)=\\mathrm{e}^{2 x-1}$, $f_2(x)=2^x$, $f_3(x)=(\\dfrac{1}{3})^{x+1}$, 则\\\\$f_1'(x)=$\\blank{50}; $f_2'(x)=$\\blank{50}; $f_3'(x)=$\\blank{50}.\\\\\n(4) 若$f_1(x)=\\lg x$, $f_2(x)=\\ln (2 x-1)$, $f_3(x)=\\log _3(3-2 x)$, 则\\\\$f_1'(x)=$\\blank{50}; $f_2'(x)=$\\blank{50}; $f_3'(x)=$\\blank{50}.", + "objs": [], + "tags": [ + "第二单元", + "2023届高三-第二轮复习讲义-16-导数及其应用" + ], + "genre": "", + "ans": "(1) $\\dfrac 12 x^{-\\frac 12}$; (2) $\\dfrac 13 x^{-\\frac 23}$; (3) $-\\dfrac 12 x^{-\\frac 32}$; (4) $\\mathrm{e}^x(x^3+3x^2)$; (5) $1+\\ln x$; (6) $\\dfrac{\\sin x-x\\cos x}{\\sin^2 x}$; (7) $2\\mathrm{e}^{2x-1}$; (8) $2^x\\ln 2$; (9) $-(\\dfrac 13)^{x+1}\\ln 3$; (10) $\\dfrac{1}{x\\ln 10}$; (11) $\\dfrac{2}{2x-1}$; (12) $\\dfrac{2}{(2x-3)\\ln 3}$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高二下学期周末卷05-20240121修改", + "edit": [ + "20230318\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "040202" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032072": { + "id": "032072", + "content": "求下列函数的最值.\\\\\n(1) $y=\\dfrac x{\\mathrm{e}^x}$, $x \\in[-1,+\\infty)$;\\\\\n(2) $y=x+2 \\cos x$, $x \\in[0, \\dfrac{\\pi}2]$.", + "objs": [], + "tags": [ + "第二单元", + "导数", + "2023届高三-第二轮复习讲义-16-导数及其应用" + ], + "genre": "4em", + "ans": "(1) 最大值为$\\dfrac 1{\\mathrm{e}}$, 最小值为$-\\mathrm{e}$; (2)最大值为$\\dfrac{\\pi}6+\\sqrt{3}$, 最小值为$\\dfrac{\\pi}2$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高二校本作业选择性必修第五章-20240121修改", + "edit": [ + "20230101\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "021429" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032073": { + "id": "032073", + "content": "已知函数$f(x)=x^3-3ax^2+9x+5$($a<0$), 若曲线$y=f(x)$的的切线斜率最小时与直线$3x+y-2=0$平行, 则$a$的值为\\blank{50}.", + "objs": [ + "K0232002X" + ], + "tags": [ + "第二单元", + "导数", + "2023届高三-第二轮复习讲义-16-导数及其应用" + ], + "genre": "", + "ans": "$-2$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "高中数学教与学例题与习题-20230321修改-20240121修改", + "edit": [ + "20221029\t王伟叶", + "20230321\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "030409", + "031356" + ], + "remark": "", + "space": "", + "unrelated": [] + }, + "032074": { + "id": "032074", + "content": "已知函数$f(x)=\\ln x-kx+1$, 若$f(x)\\le 0$恒成立, 求实数$k$的取值范围.", + "objs": [ + "K0234003X" + ], + "tags": [ + "第二单元", + "第四单元", + "导数", + "2023届高三-第二轮复习讲义-16-导数及其应用" + ], + "genre": "4em", + "ans": "$[1,+\\infty)$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "高中数学教与学例题与习题-20240121修改", + "edit": [ + "20221029\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "030426" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032075": { + "id": "032075", + "content": "若函数$y=f(x)$($x \\in D$)同时满足下列两个条件, 则称$y=f(x)$在$D$上具有性质$M$.\\\\\n\\textcircled{1} $y=f(x)$在$D$上的导数$f'(x)$存在;\\\\\n\\textcircled{2} $y=f'(x)$在$D$上的导数$f''(x)$存在, 且$f''(x)>0$(其中$f''(x)=[f'(x)]'$)恒成立.\\\\\n 判断函数$y=\\lg \\dfrac 1x$在区间$(0,+\\infty)$上是否具有性质$M$? 并说明理由.", + "objs": [], + "tags": [ + "第二单元", + "2023届高三-第二轮复习讲义-16-导数及其应用" + ], + "genre": "4em", + "ans": "具有性质$M$, 理由略", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届普陀区一模试题21-20240121修改", + "edit": [ + "20221215\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "012612" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032076": { + "id": "032076", + "content": "规定$\\mathrm{C}_x^m=\\dfrac{x(x-1) \\cdots(x-m+1)}{m !}$, 其中$x \\in \\mathbf{R}$, $m$是正整数, 且$\\mathrm{C}_x^0=1$, 这是组合数$\\mathrm{C}_n^m$($n$、$m$是正整数, 且$m \\leq n)$的一种推广, 则$\\mathrm{C}_{-15}^5$的值为\\blank{50}.", + "objs": [], + "tags": [ + "第八单元", + "2023届高三-第二轮复习讲义-17-计数原理与二项式定理" + ], + "genre": "", + "ans": "$-11628$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课29-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014080" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032077": { + "id": "032077", + "content": "某人有$5$把钥匙, 其中有$1$把是房门钥匙, 但忘记了开房门的是哪一把. 于是, 他逐把不重复地试开, 问:\\\\\n(1) 恰好第三次打开房门锁的概率是多少?\\\\\n(2) 三次内打开的概率是多少?", + "objs": [], + "tags": [ + "第八单元", + "2023届高三-第二轮复习讲义-18-概率与统计" + ], + "genre": "4em", + "ans": "(1) $\\dfrac 15$; (2) $\\dfrac 35$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2020年空中课堂高三复习课30-20240121修改", + "edit": [ + "20230128\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014094" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "032078": { + "id": "032078", + "content": "实力相当的甲、乙两人参加乒乓球比赛, 规定$5$局$3$胜制(即$5$局内谁先赢$3$局就算胜出并停止比赛), 试求甲打完$5$局才获胜的概率.", + "objs": [], + "tags": [ + "第八单元", + "2023届高三-第二轮复习讲义-18-概率与统计" + ], + "genre": "4em", + "ans": "(1) $\\dfrac 3{16}$", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023年空中课堂高三复习课26-20240121修改", + "edit": [ + "20230221\t王伟叶", + "20240121\t毛培菁" + ], + "same": [], + "related": [ + "014595" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, "040001": { "id": "040001", "content": "参数方程$\\begin{cases}x=3 t^2+4, \\\\ y=t^2-2\\end{cases}$($0 \\leq t \\leq 3$)所表示的曲线是\\bracket{20}.\n\\fourch{一支双曲线}{线段}{圆弧}{射线}", @@ -698343,7 +699485,9 @@ "20230318\t王伟叶" ], "same": [], - "related": [], + "related": [ + "032071" + ], "remark": "", "space": "", "unrelated": []