diff --git a/工具/分年级专用工具/讲义题目分类按顺序梳理_制答题卡用.ipynb b/工具/分年级专用工具/讲义题目分类按顺序梳理_制答题卡用.ipynb index 75277c8f..395a59ca 100644 --- a/工具/分年级专用工具/讲义题目分类按顺序梳理_制答题卡用.ipynb +++ b/工具/分年级专用工具/讲义题目分类按顺序梳理_制答题卡用.ipynb @@ -2,51 +2,35 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1 解答题 1\n", - "2 填空题 2\n", - "3 解答题 2\n", - "4 选择题 1\n", - "5 解答题 3\n", - "6 选择题 1\n", - "7 解答题 3\n", - "8 解答题 1\n", - "9 解答题 1\n", - "10 解答题 4\n", - "11 解答题 1\n", - "12 解答题 2\n", - "13 解答题 1\n", - "14 填空题 1\n", - "15 选择题 1\n", - "16 解答题 9\n", - "17 填空题 1\n", - "18 解答题 6\n", "1 解答题 2\n", - "2 解答题 2\n", - "3 解答题 2\n", + "2 解答题 3\n", + "3 解答题 3\n", "4 解答题 2\n", "5 解答题 2\n", - "6 解答题 1\n", - "7 解答题 1\n", - "8 解答题 1\n", - "9 解答题 1\n", - "10 填空题 1\n", - "11 解答题 2\n", - "12 解答题 2\n", - "13 解答题 3\n" + "6 解答题 2\n", + "7 解答题 2\n", + "8 解答题 2\n", + "1 解答题 1\n", + "2 解答题 2\n", + "3 解答题 2\n", + "4 解答题 3\n", + "5 解答题 2\n", + "6 解答题 2\n", + "7 选择题 1\n" ] } ], "source": [ "import os,re\n", "#修改文件名\n", - "filename = r\"C:\\Users\\Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\28_导数的概念及常用公式.tex\"\n", + "filename = r\"C:\\Users\\wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\33_.tex\"\n", "# filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\上学期周末卷\\国庆卷.tex\"\n", "outputfile = \"临时文件/题目状态.txt\"\n", "\n", @@ -89,7 +73,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.8 ('base')", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -103,12 +87,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.9.7" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" + "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" } } }, diff --git a/工具/添加关联题目.ipynb b/工具/添加关联题目.ipynb index ea936128..f87bdfef 100644 --- a/工具/添加关联题目.ipynb +++ b/工具/添加关联题目.ipynb @@ -2,15 +2,15 @@ "cells": [ { "cell_type": "code", - "execution_count": 6, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os,re,json,time\n", "\n", "\"\"\"---设置原题目id与新题目id---\"\"\"\n", - "old_id = \"1805\"\n", - "new_id = \"30478\"\n", + "old_id = \"30456\"\n", + "new_id = \"30479\"\n", "\"\"\"---设置完毕---\"\"\"\n", "\n", "old_id = old_id.zfill(6)\n", diff --git a/工具/讲义生成.ipynb b/工具/讲义生成.ipynb index ab516f26..a0790337 100644 --- a/工具/讲义生成.ipynb +++ b/工具/讲义生成.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -13,9 +13,11 @@ "题块 1 处理完毕.\n", "正在处理题块 2 .\n", "题块 2 处理完毕.\n", - "开始编译教师版本pdf文件: 临时文件/33_立体几何中的定量计算_教师_20221109.tex\n", + "正在处理题块 3 .\n", + "题块 3 处理完毕.\n", + "开始编译教师版本pdf文件: 临时文件/测验卷07_教师_20221111.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/33_立体几何中的定量计算_学生_20221109.tex\n", + "开始编译学生版本pdf文件: 临时文件/测验卷07_学生_20221111.tex\n", "0\n" ] } @@ -28,19 +30,19 @@ "\"\"\"---设置模式结束---\"\"\"\n", "\n", "\"\"\"---设置模板文件名---\"\"\"\n", - "template_file = \"模板文件/第一轮复习讲义模板.tex\"\n", - "# template_file = \"模板文件/测验周末卷模板.tex\"\n", + "# template_file = \"模板文件/第一轮复习讲义模板.tex\"\n", + "template_file = \"模板文件/测验周末卷模板.tex\"\n", "# template_file = \"模板文件/日常选题讲义模板.tex\"\n", "\"\"\"---设置模板文件名结束---\"\"\"\n", "\n", "\"\"\"---设置其他预处理替换命令---\"\"\"\n", "#2023届第一轮讲义更换标题\n", - "exec_list = [(\"标题数字待处理\",\"33\"),(\"标题文字待处理\",\"立体几何中的定量计算\")] \n", - "enumi_mode = 0\n", + "# exec_list = [(\"标题数字待处理\",\"32\"),(\"标题文字待处理\",\"空间向量的概念与性质及立体几何中的证明问题\")] \n", + "# enumi_mode = 0\n", "\n", "#2023届测验卷与周末卷\n", - "# exec_list = [(\"标题替换\",\"线上测验02\")]\n", - "# enumi_mode = 1\n", + "exec_list = [(\"标题替换\",\"测验07\")]\n", + "enumi_mode = 1\n", "\n", "# 日常选题讲义\n", "# exec_list = [(\"标题文字待处理\",\"三角向量复数立几易错题\")] \n", @@ -49,14 +51,15 @@ "\"\"\"---其他预处理替换命令结束---\"\"\"\n", "\n", "\"\"\"---设置目标文件名---\"\"\"\n", - "destination_file = \"临时文件/33_立体几何中的定量计算\"\n", + "destination_file = \"临时文件/测验卷07\"\n", "\"\"\"---设置目标文件名结束---\"\"\"\n", "\n", "\n", "\"\"\"---设置题号数据---\"\"\"\n", "problems = [\n", - "\"293,304,10721,294,30462,305,299,4096\",\n", - "\"10730,4348,4698,30472,4243,296,30468\"\n", + "\"11028:11029,11032:11033,11035:11039\",\n", + "\"11040:11041,11043\",\n", + "\"11046\"\n", "\n", "]\n", "\"\"\"---设置题号数据结束---\"\"\"\n", diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 7ab75490..f5499089 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -52403,7 +52403,7 @@ }, "001954": { "id": "001954", - "content": "已知$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$是三个不共面的向量, 向量$\\overrightarrow{AB}=\\overrightarrow{a}$, $\\overrightarrow{AC}=\\overrightarrow{b}$, $\\overrightarrow{AD}=\\overrightarrow{c}$, 若$D$点在平面$ABC$内的射影为$P$, 且$\\overrightarrow{AP}=x\\overrightarrow{a}+y\\overrightarrow{b}$, 则$x=$\\blank{180}.(用$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$之间的内积来表示)", + "content": "已知$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$是三个不共面的向量, 向量$\\overrightarrow{AB}=\\overrightarrow{a}$, $\\overrightarrow{AC}=\\overrightarrow{b}$, $\\overrightarrow{AD}=\\overrightarrow{c}$, 若$D$点在平面$ABC$内的射影为$P$, 且$\\overrightarrow{AP}=x\\overrightarrow{a}+y\\overrightarrow{b}$, 则$x=$\\blank{180}.(用$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$之间的数量积来表示)", "objs": [ "K0625003X" ], @@ -52421,7 +52421,8 @@ ], "origin": "2016届创新班作业\t3127-空间向量的分解定理", "edit": [ - "20220625\t王伟叶" + "20220625\t王伟叶", + "20221111\t周双" ], "same": [], "related": [], @@ -260102,7 +260103,7 @@ }, "010715": { "id": "010715", - "content": "如图, 在平行六面体$ABCD-A_1B_1C_1D_1$中, 设$\\overrightarrow{D_1A}=\\overrightarrow a$, $\\overrightarrow{D_1B_1}=\\overrightarrow b$, $\\overrightarrow{D_1C}=\\overrightarrow c$. 试用$\\overrightarrow a$、$\\overrightarrow b$、$\\overrightarrow c$表示$\\overrightarrow{D_1B}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (2,0) node [below right] {$B$} coordinate (B) --++ (45:{2/2}) node [right] {$C$} coordinate (C)\n--++ (0.2,1.5) node [above right] {$C_1$} coordinate (C1)\n--++ (-2,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{2/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (2.2,1.5) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{2/2}) (B1) --++ (-2,0);\n\\draw [dashed] (A) --++ (45:{2/2}) node [left] {$D$} coordinate (D) --++ (2,0) (D) --++ (0.2,1.5);\n\\draw [dashed] (D1) -- (A) (D1) -- (B) (D1) -- (C) (D1) -- (B1);\n\\end{tikzpicture}\n\\end{center}", + "content": "如图, 在平行六面体$ABCD-A_1B_1C_1D_1$中, 设$\\overrightarrow{D_1A}=\\overrightarrow a$, $\\overrightarrow{D_1B_1}=\\overrightarrow b$, $\\overrightarrow{D_1C}=\\overrightarrow c$. 试用$\\overrightarrow a$、$\\overrightarrow b$、$\\overrightarrow c$表示$\\overrightarrow{D_1B}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (2,0) node [below right] {$B$} coordinate (B) --++ (45:{2/2}) node [right] {$C$} coordinate (C)\n--++ (0.2,1.5) node [above right] {$C_1$} coordinate (C1)\n--++ (-2,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{2/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (2.2,1.5) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{2/2}) (B1) --++ (-2,0) (D1) -- (B1);\n\\draw [dashed] (A) --++ (45:{2/2}) node [left] {$D$} coordinate (D) --++ (2,0) (D) --++ (0.2,1.5);\n\\draw [dashed] (D1) -- (A) (D1) -- (B) (D1) -- (C);\n\\end{tikzpicture}\n\\end{center}", "objs": [ "K0624003X" ], @@ -260117,7 +260118,8 @@ "usages": [], "origin": "新教材选择性必修第一册习题", "edit": [ - "20220806\t王伟叶" + "20220806\t王伟叶", + "20221111\t周双" ], "same": [], "related": [], @@ -260537,7 +260539,7 @@ }, "010733": { "id": "010733", - "content": "如图, 已知正三棱柱$ABC-A_1B_1C_1$的各条棱长均为$a$, $D$是棱$CC_1$的中点. 求证: 平面$AB_1D\\perp$平面$ABB_1A_1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.3]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,{sqrt(3)}) node [below] {$B$} coordinate (B);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,2,0) node [above] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,2,0) node [right] {$C_1$} coordinate (C1);\n\\draw (B) -- (B1) -- (A1) (B1) -- (C1);\n\\draw (A) -- (B1) -- ($(C)!0.5!(C1)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C) -- (C1) -- (A1) -- cycle;\n\\draw [dashed] (A) -- (D) (A) -- (C);\n\\end{tikzpicture}\n\\end{center}", + "content": "如图, 已知正三棱柱$ABC-A_1B_1C_1$的各条棱长均为$a$, $D$是棱$CC_1$的中点. 用向量法证明: 平面$AB_1D\\perp$平面$ABB_1A_1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.3]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,{sqrt(3)}) node [below] {$B$} coordinate (B);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,2,0) node [above] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,2,0) node [right] {$C_1$} coordinate (C1);\n\\draw (B) -- (B1) -- (A1) (B1) -- (C1);\n\\draw (A) -- (B1) -- ($(C)!0.5!(C1)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C) -- (C1) -- (A1) -- cycle;\n\\draw [dashed] (A) -- (D) (A) -- (C);\n\\end{tikzpicture}\n\\end{center}", "objs": [ "K0628005X" ], @@ -260552,7 +260554,8 @@ "usages": [], "origin": "新教材选择性必修第一册习题", "edit": [ - "20220806\t王伟叶" + "20220806\t王伟叶", + "20221111\t周双" ], "same": [], "related": [], @@ -267800,7 +267803,7 @@ }, "011036": { "id": "011036", - "content": "若偶函数$y=f(x)$($x\\in \\mathbf{R}$)满足$f(x+2)=f(x-2)$, 当$x\\in [-2,0]$时, $f(x)=(\\dfrac 12)^x-1$, 若$g(x)=f(x)-\\log_a(x+2)$($a>1$)在区间$(-2,6]$上恰有$3$个不同的零点, 则实数$a$的取值范是\\blank{50}", + "content": "若偶函数$y=f(x)$($x\\in \\mathbf{R}$)满足$f(x+2)=f(x-2)$, 当$x\\in [-2,0]$时, $f(x)=(\\dfrac 12)^x-1$, 若$g(x)=f(x)-\\log_a(x+2)$($a>1$)在区间$(-2,6]$上恰有$3$个不同的零点, 则实数$a$的取值范围是\\blank{50}", "objs": [], "tags": [ "第二单元" @@ -267812,7 +267815,8 @@ "usages": [], "origin": "2022届高三上学期周末卷9试题9", "edit": [ - "20220817\t王伟叶" + "20220817\t王伟叶", + "20221111\t王伟叶" ], "same": [], "related": [], @@ -267906,7 +267910,7 @@ }, "011041": { "id": "011041", - "content": "若$f(x)$是$\\mathbf{R}$上的奇函数, 且$f(x)$在$[0,+\\infty)$上单调递增, 则下列结论:\\\\\n\\textcircled{1} $y=|f(x)|$是偶函数;\\\\\n\\textcircled{2} 对任意$x\\in \\mathbf{R}$都有$f(-x)+|f(x)|=0$;\\\\\n\\textcircled{3} $y=f(x)f(-x)$在$(-\\infty ,0]$上单调递增;\\\\\n\\textcircled{4} 反函数$y=f^{-1}(x)$存在且在$(-\\infty ,0]$上单调递增.\\\\\n其中正确结论的个数为\\bracket{20}.\n\\fourch{$1$}{$2$}{$3$}{$4$}", + "content": "若$f(x)$是$\\mathbf{R}$上的奇函数, 且$f(x)$在$[0,+\\infty)$上严格递增, 则下列结论:\\\\\n\\textcircled{1} $y=|f(x)|$是偶函数;\\\\\n\\textcircled{2} 对任意$x\\in \\mathbf{R}$都有$f(-x)+|f(x)|=0$;\\\\\n\\textcircled{3} $y=f(x)f(-x)$在$(-\\infty ,0]$上严格递增;\\\\\n\\textcircled{4} 反函数$y=f^{-1}(x)$存在且在$(-\\infty ,0]$上严格递增.\\\\\n其中正确结论的个数为\\bracket{20}.\n\\fourch{$1$}{$2$}{$3$}{$4$}", "objs": [], "tags": [ "第二单元" @@ -267918,7 +267922,8 @@ "usages": [], "origin": "2022届高三上学期周末卷9试题14", "edit": [ - "20220817\t王伟叶" + "20220817\t王伟叶", + "20221111\t王伟叶" ], "same": [], "related": [], @@ -308257,7 +308262,9 @@ "20221104\t王伟叶" ], "same": [], - "related": [], + "related": [ + "030479" + ], "remark": "", "space": "12ex" }, @@ -308813,5 +308820,33 @@ ], "remark": "", "space": "12ex" + }, + "030479": { + "id": "030479", + "content": "以正方体$ABCD-A_1B_1C_1D_1$的对角线的交点为坐标原点$O$建立空间直角坐标系$O-xyz$, 其中$A(1,\\sqrt{2},0)$, $B(-1,\\sqrt{2},0)$, 求点$A_1$的坐标.", + "objs": [ + "K0624003X", + "K0627005X" + ], + "tags": [ + "第六单元", + "空间向量" + ], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "高中数学教与学例题与习题-20221111修改", + "edit": [ + "20221104\t王伟叶", + "20221111\t" + ], + "same": [], + "related": [ + "030456" + ], + "remark": "", + "space": "12ex" } } \ No newline at end of file