From 93a6c1fc970db06bf7a0c026df29c9067e327194 Mon Sep 17 00:00:00 2001 From: wangweiye7840 Date: Tue, 4 Jun 2024 11:39:14 +0800 Subject: [PATCH] =?UTF-8?q?25=E5=B1=8A=E4=B8=80=E4=BA=9B=E7=AD=94=E6=A1=88?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 工具v4/文本文件/metadata.txt | 574 ++++++++++++++++++++++++++++++----- 1 file changed, 495 insertions(+), 79 deletions(-) diff --git a/工具v4/文本文件/metadata.txt b/工具v4/文本文件/metadata.txt index 0f84a3bd..89be7a75 100644 --- a/工具v4/文本文件/metadata.txt +++ b/工具v4/文本文件/metadata.txt @@ -1,122 +1,538 @@ ans -023644 -证明略 +021268 +\begin{center} +\begin{tabular}{|c|c|c|c|c|c|} +\hline 标准方程 & 图形 & 顶点 & 对称轴 & 焦点 & 准线 \\ +\hline $y^2=2 p x$($p>0$) & \begin{tikzpicture}[>=latex,scale = 0.5] +\draw [->] (-2,0) -- (2,0) node [below] {$x$}; +\draw [->] (0,-2) -- (0,2) node [right] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (-0.5,-2) -- (-0.5,2); +\draw [domain = -2:2] plot ({\x*\x/2},\x); +\end{tikzpicture} & $(0,0)$ & $x$轴 & $(\frac{p}{2},0)$ & $x=-\frac{p}{2}$ \\ +\hline $y^2=-2 p x$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5] +\draw [->] (-2,0) -- (2,0) node [below] {$x$}; +\draw [->] (0,-2) -- (0,2) node [right] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (0.5,-2) -- (0.5,2); +\draw [domain = -2:2] plot ({-\x*\x/2},\x); +\end{tikzpicture} & $(0,0)$ & $x$轴 & $(-\frac{p}{2},0)$ & $x=\frac{p}{2}$ \\ +\hline $x^2=2 p y$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5] +\draw [->] (-2,0) -- (2,0) node [below] {$x$}; +\draw [->] (0,-2) -- (0,2) node [right] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (-2,-0.5) -- (2,-0.5); +\draw [domain = -2:2] plot (\x,{\x*\x/2}); +\end{tikzpicture}& $(0,0)$ & $y$轴 & $(0,\frac{p}{2})$ & $y=-\frac{p}{2}$ \\ +\hline $x^2=-2 p y$($p>0$)&\begin{tikzpicture}[>=latex,scale = 0.5] +\draw [->] (-2,0) -- (2,0) node [below] {$x$}; +\draw [->] (0,-2) -- (0,2) node [right] {$y$}; +\draw (0,0) node [below right] {$O$}; +\draw (-2,0.5) -- (2,0.5); +\draw [domain = -2:2] plot (\x,-{\x*\x/2}); +\end{tikzpicture} & $(0,0)$ & $y$轴 & $(0,-\frac{p}{2})$ & $y=\frac{p}{2}$ \\ +\hline +\end{tabular} +\end{center} -019070 -(1) $f'(x)=2x\sin x+x^2 \cos x$; (2) $f'(x)=\dfrac{x^2+4x}{(x+2)^2}$; (3) $f'(x)=2x-4$ +021270 +$(0,-8)$; $y=8$ -019071 -证明略 +021271 +$(0,\frac{1}{16})$; $y=-\frac{1}{16}$ -019073 -$-4$或$\dfrac{1}{4}$ +021272 +$(0,-\frac{1}{6})$; $y=\frac{1}{6}$ -019074 -$-1$ +041007 +(1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$; (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$; +(4) $y^2=16x$或$y^2=-16x$; +(5) $y^2=16x$或$x^2=-12y$. -009913 -(1) $3\mathrm{e}^x-\mathrm{e}x^{\mathrm{e}-1}$; (2) $-\sin x+\dfrac{2}{x^2}$; (3) $24x^2+24x+6$; (4) $\dfrac{1}{2}x^{-\frac{1}{2}}\sin x+\sqrt{x} \cos x$; (5) $\ln x+1+2x^{-3}$; (6) $1+\dfrac{1}{x^2}$; (7) $\dfrac{4x}{(x^2+1)^2}$; (8) $\dfrac{1}{\cos^2 x}$ +021276 +$\frac{5}{2}$ -019076 -证明略 +021279 +$(3,\pm 2\sqrt{3})$ -000143 -(1) $\sqrt{58}$; (2) $k=-\dfrac{1}{3}$, 反向 +021284 +$(3,\pm 2\sqrt{6})$ -000144 -(1) $\overrightarrow{AB}=(-9,15)$, $|\overrightarrow{AB}|=3\sqrt{34}$; (2) $\overrightarrow{OC}=(3,6)$, $\overrightarrow{OD}=(19,-39)$; (3) $-56$ +021269 +A -000146 -$\lambda=1$, $\mu=-2$ +021275 +$(\frac{m}{4},0)$;$x=-\frac{m}{4}$ -000148 -$(\dfrac{1}{3},-\dfrac{5}{3})$ +041008 +$(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$ -000149 -证明略 +041009 +$y^2=12x$ -000152 -(1) 证明略; (2) $\dfrac{\pi}{6}$或$\dfrac{7\pi}{6}$ +041010 +2 -000155 -$k=-\dfrac{2}{3}$ +041011 +$y^2=-8x$;$m=\pm 2\sqrt{6}$ -000157 -证明略 +008929 +$x^2=-y,x\in [-1,1]$ -000160 -不存在 +041012 +(1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$ -024842 -$1$ +021278 +$(1,\pm 2)$ -014777 -$\mathrm{e}$ +041013 +最小值为$4$, $M(\frac{1}{4},1)$ -024843 -$2x\cos x-x^2 \sin x$ +041014 +$x^2=-12y$ -024844 -$(1,-8)$或$(-1,-12)$ +021280 +$y^2=x$ -024845 -$y=2\sqrt{2}x-1$或$y=-2\sqrt{2} x-1$ +041015 +$y^2=8x$ -024846 -$1+\sqrt{2}$ +021304 +$\frac{\pi}{2}$ -024847 -$3$或$-1$ +021308 +$\frac{11}{2}$ -024849 -$-\dfrac{8}{15}{}^\circ/\mathrm{min}$ +021287 +$\frac{45}{8}$ -041168 -$-6-3\Delta t$ +009840 +$(\frac{1}{4},0)$;$x=-\frac{1}{4}$ -041170 -\textcircled{3} +021309 +2 -041171 -等于 +021290 +$(\frac{1}{2},1)$ -041173 -$2$ +021291 +$y^2=2x$或$y^2=6x$ -041174 -$-\dfrac{1}{2}$ +041016 +相切 -041175 -$\dfrac{1}{3}\text{m/s}$ +021339 +$x^2-x+y^2=0(x\neq 0)$ -041176 -$-2$ +021289 +$4\sqrt{3}$ -023654 -$\dfrac{10}{3}$ +021293 +3 -041191 -$3$ +021294 +$(4,2)$ -041192 +021295 $-4$ -041193 -$y=x+1$与$y=-3x-3$ +021305 +$y^2=\pm 4x$ -041194 -$\dfrac{3}{4}$ +013106 +$[-1,1]$ -041177 -$\sqrt{2}$ +021292 +B -041178 -(1) $y=-2x+1$; (2) $y=x-\dfrac{1}{4}$ +008930 +$0$或$-\frac{1}{2}$ -024850 -(1) $f'(x)=\mathrm{e}^x-\cos x$; (2) $f'(x)=-\dfrac{1}{x\ln 3}$; (3) $f'(x)=2\sin x\cos x$; (4) $f'(x)=\dfrac{1}{\cos^2 x}$; (5) $f'(x)=-\dfrac{\cos x}{\sin^2 x}$; (6) $f'(x)=\dfrac{1}{2}x^{-\frac{1}{2}}-x^{-2}$; (7) $f'(x)=3x^2+6x+3$; (8) $f'(x)=\dfrac{1}{x}$ +008934 +$4x-y-15=0$ -041197 -(1) $y'=\dfrac{\sin x-\cos x-1}{(1+\cos x)^2}$; (2) $y'=3x^2-\dfrac{3}{x}x^{-\frac{5}{2}}+\dfrac{\cos x}{x^2}-\dfrac{2\in x}{x^3}$; (3) $y'=\dfrac{4}{(1-x)^2}$; (4) $y'=\tan x+\dfrac{x}{\cos^2 x}$ +008922 +$y=\frac{1}{4},x>\frac{1}{16}$ +021299 +2 + +021300 +$2\sqrt{15}$ + +021321 +(1) 定点$(2,0)$;(2) 4 + +041017 +(1) 6; (2) $\frac{1}{32}$ + +041018 +8 + +021316 +$\frac{11}{4}$ + +021326 +8 + +021319 +$y=\pm \frac{\sqrt{3}}{3}x+1$ + +041019 +$\frac{2}{p}$ + +041020 +D + +041021 +(1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$ + +021331 +D + +041022 +C + +041023 +必要不充分 + +021334 +$y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$ + +021335 +$y=-2x^2+8x-4$ + +021336 +$y^2=8x-16$ + +021337 +$x^2+y^2=1$ + +021338 +$3x+y-4=0(x \neq 1)$ + +021340 +$(x-1)^2+(y-2)^2=\frac{1}{9}$ + +021341 +$x+2y-5=0$ + +021342 +$x^2+y^2=4(x>0,y>0)$ + +021343 +$(x-3)^2=10y-15$ + +041024 +C + +008846 +0或$-\frac{1}{2}$ + +008847 +$\frac{3}{2}$ + +008852 +0或$\frac{1}{4}$或$-\frac{1}{2}$ + +008853 +$[-4,4]]$ + +041025 +(2) $13x-2y=0$ + +041026 +$(-3,5),(1,1)$ + +041027 +$k<-2$或$k>2$或$k=\pm \sqrt{3}$ + +010704 +$(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$ + +010703 +当$01$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线 + +021348 +$x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$ + +021349 +0 + +021351 +$\frac{\pi}{3}$或$\frac{2\pi}{3}$ + +041028 +$(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$ + +021352 +4 + +021353 +D + +041029 +$x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) + +021354 +(1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$ + +021355 +$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线 + +009845 +$x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) + +009846 +$x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$ + +021358 +6 + +021359 +$\sqrt{17}$ + +021362 +$(3\sqrt{2},\sqrt{2})$ + +021363 +最大值7; 最小值$\frac{3\sqrt{15}-4}{4}$ + +021364 +$\sqrt{33}+2\sqrt{6}$ + +012470 +B + +041030 +B + +041031 +A + +041032 +$(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$ + +041033 +13 + +041034 +$\frac{1+2\sqrt{21}}{3}$ + +041035 +$y=\pm 1$ + +041036 +$y^2=2x-2$ + +041037 +$7\sqrt{3}$ + +041038 +(1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆 +$\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$ + +041039 +(1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$; +(2) 点 $T$ 不在曲线 $\Gamma$ 上 + +ans + +041073 +(-2,$\dfrac{1}{2}$) + +041074 +$x-8y=0(x<-\dfrac{8}{15}\sqrt{15}$或$x>\dfrac{8}{15}\sqrt{15}$) + +041075 +$(-\infty,-1)\cup(1,+\infty)$ + +041076 +$[3+2\sqrt{3},+\infty)$ + +041077 +$2\sqrt{10}$ + +041078 +44 + +002112 +$y^2=4x$ + +002409 +$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$ + +041079 +$\pm 2\sqrt{6}$ + +041080 +(5,0) + +041081 +$\dfrac{23}{24}$ + +041082 +176.0 + +041083 +$|PA|_{\min}=\begin{cases} + a,01 +\end{cases}$ + +041084 +不存在 + +041085 +(1)$m_A=91.5,m_B=90\\(2)S^2_A\dfrac{4}{3}\sqrt{3},\quad \overrightarrow{FA}\cdot \overrightarrow{FB}_{max}=9,\quad$此时$p=2\sqrt{3}$\\(3)$p=2\sqrt{3}$ + +041097 +$(-\infty,-2)$ + +041098 +$\dfrac{1}{2}$ + +041099 +(2)(3)(4) + +018928 +7 + +041100 +AD,CD + +041101 +(3)(4) + +041102 +$\pm 2$ + +041103 +$y^2-\dfrac{x^2}{48}=1\quad(y<0)$ + +041104 +4或2或$\dfrac{3}{2}$ + +041105 +(2) + +023553 +(1)$\dfrac{17}{45}$\\(2)一级6箱,二级2箱\\(3)预估287.69克 + +041106 +$[\dfrac{1}{3},1)\cup(1,3]$ + +018949 +没有被抓的风险 + +041107 +(1)$\dfrac{x^2}{24}+\dfrac{y^2}{20}=1\\S_{max}=\dfrac{5\sqrt{30}}{4}$ + +041108 +D + +041109 +C + +041110 +A + +041111 +B + +041112 +$\dfrac{2}{5}\sqrt{10}$ + +041113 +A + +030201 +B + +041114 +A + +041115 +$(\sqrt{3},2)$ + +041116 +$\dfrac{\sqrt{2}}{2}$ + +041117 +(1)$arccos\dfrac{2}{5}\\$(2)正弦值为$\dfrac{\sqrt{15}}{5}\\(3)\dfrac{\pi}{6}$ + +041118 +$l:y-2=\dfrac{118}{143}(x-3)$ + +041119 +$x^2+y^2+x-6y+3=0$ + +041120 +曲线方程为$y^2=48-12x\quad(x\geq3)$及$y^2=4x\quad(x<3)$ + +041121 +$x^2+y^2=7$ + + +ans + +012345 +D + +023233 +$a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2 + \end{cases}$. + +023255 +(1)略;(2)$a_n=\begin{cases} + \frac{1}{2},n=1\\-\frac{1}{2n(n-1)},n\geq2 +\end{cases}$