20220919 evening

This commit is contained in:
Wang Weiye 2022-09-19 18:55:40 +08:00
parent 0586dada78
commit 96441d55c6
4 changed files with 139 additions and 71 deletions

View File

@ -2,53 +2,47 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 填空题 1\n",
"2 填空题 1\n",
"3 填空题 1\n",
"4 填空题 1\n",
"5 填空题 1\n",
"6 填空题 1\n",
"1 填空题 8\n",
"2 解答题 1\n",
"3 解答题 2\n",
"4 选择题 1\n",
"5 解答题 1\n",
"6 选择题 1\n",
"7 填空题 1\n",
"8 填空题 1\n",
"9 解答题 1\n",
"10 解答题 1\n",
"11 解答题 2\n",
"12 解答题 1\n",
"13 解答题 1\n",
"14 解答题 1\n",
"15 填空题 1\n",
"16 选择题 1\n",
"1 填空题 1\n",
"2 填空题 1\n",
"3 填空题 1\n",
"4 填空题 1\n",
"5 填空题 1\n",
"6 选择题 1\n",
"7 选择题 1\n",
"10 填空题 1\n",
"1 填空题 8\n",
"2 解答题 1\n",
"3 解答题 3\n",
"4 解答题 1\n",
"5 解答题 2\n",
"6 解答题 1\n",
"7 填空题 1\n",
"8 解答题 1\n",
"9 解答题 1\n",
"10 解答题 1\n",
"11 解答题 1\n",
"12 选择题 1\n"
"9 选择题 1\n",
"10 选择题 1\n",
"11 解答题 4\n"
]
}
],
"source": [
"import os,re\n",
"#修改文件名\n",
"filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\12_和差倍角公式.tex\"\n",
"filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\15_周期性与其他三角函数.tex\"\n",
"outputfile = \"临时文件/题目状态.txt\"\n",
"\n",
"outputstr = \"\"\n",
"with open(filename,\"r\",encoding = \"utf8\") as f:\n",
" data = f.read()\n",
"data = re.sub(r\"\\\\begin\\{center\\}[\\s\\S]*?\\\\end\\{center\\}\",\"\",data)\n",
"sections = re.findall(r\"\\\\begin\\{enumerate\\}([\\s\\S]*?\\\\end\\{enumerate\\})\",data)\n",
"for sec in sections:\n",
" sec = sec.replace(\"\\\\item\",\"\\\\enditem\\\\item\").replace(\"\\\\end{enumerate}\",\"\\\\enditem\")\n",
@ -84,7 +78,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.8 ('base')",
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
@ -98,12 +92,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
}
}
},

View File

@ -9,8 +9,8 @@
"import os,re,json,time\n",
"\n",
"\"\"\"---设置原题目id与新题目id---\"\"\"\n",
"old_id = \"333\"\n",
"new_id = \"30022\"\n",
"old_id = \"1166\"\n",
"new_id = \"30025\"\n",
"\"\"\"---设置完毕---\"\"\"\n",
"\n",
"old_id = old_id.zfill(6)\n",
@ -50,7 +50,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.8 ('base')",
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
@ -64,12 +64,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
}
}
},

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 7,
"metadata": {},
"outputs": [
{
@ -13,11 +13,9 @@
"题块 1 处理完毕.\n",
"正在处理题块 2 .\n",
"题块 2 处理完毕.\n",
"正在处理题块 3 .\n",
"题块 3 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/九月月考_教师_20220918.tex\n",
"开始编译教师版本pdf文件: 临时文件/15_周期性与其他三角函数_教师_20220919.tex\n",
"0\n",
"开始编译学生版本pdf文件: 临时文件/九月月考_学生_20220918.tex\n",
"开始编译学生版本pdf文件: 临时文件/15_周期性与其他三角函数_学生_20220919.tex\n",
"0\n"
]
}
@ -30,30 +28,29 @@
"\"\"\"---设置模式结束---\"\"\"\n",
"\n",
"\"\"\"---设置模板文件名---\"\"\"\n",
"# template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"template_file = \"模板文件/测验周末卷模板.tex\"\n",
"template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"# template_file = \"模板文件/测验周末卷模板.tex\"\n",
"\"\"\"---设置模板文件名结束---\"\"\"\n",
"\n",
"\"\"\"---设置其他预处理替换命令---\"\"\"\n",
"#2023届第一轮讲义更换标题\n",
"# exec_list = [(\"标题数字待处理\",\"12\"),(\"标题文字待处理\",\"和差倍角公式\")] \n",
"# enumi_mode = 0\n",
"exec_list = [(\"标题数字待处理\",\"15\"),(\"标题文字待处理\",\"周期性与其他三角函数\")] \n",
"enumi_mode = 0\n",
"\n",
"#2023届测验卷与周末卷\n",
"exec_list = [(\"标题替换\",\"九月月考\")]\n",
"enumi_mode = 1\n",
"# exec_list = [(\"标题替换\",\"周末卷03\")]\n",
"# enumi_mode = 1\n",
"\"\"\"---其他预处理替换命令结束---\"\"\"\n",
"\n",
"\"\"\"---设置目标文件名---\"\"\"\n",
"destination_file = \"临时文件/九月月考\"\n",
"destination_file = \"临时文件/15_周期性与其他三角函数\"\n",
"\"\"\"---设置目标文件名结束---\"\"\"\n",
"\n",
"\n",
"\"\"\"---设置题号数据---\"\"\"\n",
"problems = [\n",
"\"4080,4122,4312,4451,4557,4276,30019,4356,4320,4359,30020,4091\",\n",
"\"4400,8101,4157,4440\",\n",
"\"4370,4224,4328,4444,4184\"\n",
"\"1496,1497,136,3154,6096,3179,1535,3172,9612,3152,10109\",\n",
"\"1492,1498,1513,9597,1495,1538,3177,1537,6225,6062,6097\"\n",
"]\n",
"\"\"\"---设置题号数据结束---\"\"\"\n",
"\n",
@ -197,7 +194,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.8 ('base')",
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
@ -211,12 +208,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
}
}
},

View File

@ -29290,7 +29290,9 @@
"20220625\t王伟叶"
],
"same": [],
"related": [],
"related": [
"030025"
],
"remark": "",
"space": "12ex"
},
@ -34945,7 +34947,7 @@
},
"001378": {
"id": "001378",
"content": "[选做]\n在三角形$ABC$中, 已知三条边上的高$h_a,h_b,h_c$分别为$1/3,1/4,1/5$, 解这个三角形.",
"content": "在三角形$ABC$中, 已知三条边$a,b,c$上的高$h_a,h_b,h_c$分别为$1/3,1/4,1/5$, 求$A$.",
"objs": [
"K0315003B"
],
@ -68075,7 +68077,7 @@
},
"002745": {
"id": "002745",
"content": "使不等式$2x^2-5x-3\\ge 0$成立的一个充分不必要条件是\\bracket{20}. \n\\fourch{$x<0$}{$x\\ge 0$}{$x\\in \\{-1,3,5\\}$}{$x\\le \\dfrac12$或x$\\ge 3$}",
"content": "使不等式$2x^2-5x-3\\ge 0$成立的一个充分不必要条件是\\bracket{20}. \n\\fourch{$x<0$}{$x\\ge 0$}{$x\\in \\{-1,3,5\\}$}{$x\\le \\dfrac12$或$x\\ge 3$}",
"objs": [
"K0106001B"
],
@ -77258,7 +77260,7 @@
},
"003128": {
"id": "003128",
"content": "在三角形$ABC$中,\n(1) 用三个角$A,B,C$及外接圆半径$R$表示三角形的面积$S$, 得$S=$\\blank{50};\\\\\n(2) 用三条边$a,b,c$及外接圆半径$R$表示三角形的面积$S$, 得$S=$\\blank{50};\\\\\n(3) 用内切圆半径$r$, 周长$2p$表示三角形面积$S$, 得$S=$\\blank{50}.",
"content": "在三角形$ABC$中,\\\\\n(1) 用三个角$A,B,C$及外接圆半径$R$表示三角形的面积$S$, 得$S=$\\blank{50};\\\\\n(2) 用三条边$a,b,c$及外接圆半径$R$表示三角形的面积$S$, 得$S=$\\blank{50};\\\\\n(3) 用内切圆半径$r$, 周长$2p$表示三角形面积$S$, 得$S=$\\blank{50}.",
"objs": [
"K0314004B",
"K0314006B"
@ -77553,7 +77555,7 @@
},
"003141": {
"id": "003141",
"content": "在三角形$ABC$中, $(a+b)^2-c^2=4$, $C=\\dfrac{\\pi}3$, 则面积$S=$\\blank{50}.",
"content": "在三角形$ABC$中, $(a+b)^2-c^2=4$, $C=\\dfrac{\\pi}3$, 则面积$S=$\\blank{50}.",
"objs": [
"K0314001B",
"K0315003B"
@ -77644,7 +77646,7 @@
},
"003145": {
"id": "003145",
"content": "已知$D,C,B$三点在地面同一直线上, $DC=a$, 从$C,D$两点测得$A$点的仰角分别为$\\alpha,\\beta$($\\alpha>\\beta$), 则点$A$离地面的高$AB=$\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex]\n \\draw (0,0) node [below left] {$D$} -- (4,0) node [below] {$C$} -- (7,0) node [below right] {$B$} -- (7,3) node [above right] {$A$};\n \\draw (4,0) -- (7,3);\n \\draw (0,0) -- (7,3);\n \\draw (4.5,0) arc (0:atan(1):0.5);\n \\draw (5,0) node [above] {$\\alpha$};\n \\draw (0.5,0) arc(0:atan(3/7):0.5);\n \\draw (1.5,0) node [above] {$\\beta$};\n \\end{tikzpicture}\n\\end{center}",
"content": "已知$D,C,B$三点在地面同一直线上, $DC=a$, 从$C,D$两点测得$A$点的仰角分别为$\\alpha,\\beta$($\\alpha>\\beta$), 则点$A$离地面的高$AB=$\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex,scale = 0.6]\n \\draw (0,0) node [below left] {$D$} -- (4,0) node [below] {$C$} -- (7,0) node [below right] {$B$} -- (7,3) node [above right] {$A$};\n \\draw (4,0) -- (7,3);\n \\draw (0,0) -- (7,3);\n \\draw (4.5,0) arc (0:atan(1):0.5);\n \\draw (5,0) node [above] {$\\alpha$};\n \\draw (0.5,0) arc(0:atan(3/7):0.5);\n \\draw (1.5,-0.2) node [above] {$\\beta$};\n \\end{tikzpicture}\n\\end{center}",
"objs": [
"K0317002B"
],
@ -77667,7 +77669,7 @@
},
"003146": {
"id": "003146",
"content": "在一个特定时段内, 以点$E$为中心的$7$海里以内海域被设为警戒水域. 点$E$正北$55$海里处有一个雷达观测站$A$. 某时刻测得一艘匀速直线行驶的船只位于点$A$北偏东$45^\\circ$且与点$A$相距$40\\sqrt 2$海里的位置$B$, 经过$40$分钟又测得该船已行驶到点$A$北偏东$45^\\circ+\\arcsin\\dfrac{\\sqrt{26}}{26}$且与点$A$相距$10\\sqrt{13}$海里的位置$C$.\n(1) 求该船的行驶速度(单位: 海里$/$小时);\n(2) 若该船不改变航行方向继续行驶, 判断它是否会进入警戒水域, 并说明理由.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.5]\n \\draw (0,0) -- (0,5.5) node [left] {$A$} coordinate (A);\n \\draw (0,5.5) -- ++ (45:{4*sqrt(2)}) coordinate (B) node [right] {$B$};\n \\draw (A) ++ ({45-asin(1/sqrt(26))}:{sqrt(13)}) coordinate (C) node [right] {$C$} -- (B);\n \\draw (C) -- (A);\n \\end{tikzpicture}\n\\end{center}",
"content": "在一个特定时段内, 以点$E$为中心的$7$海里以内海域被设为警戒水域. 如图, 点$E$正北$55$海里处有一个雷达观测站$A$. 某时刻测得一艘匀速直线行驶的船只位于点$A$北偏东$45^\\circ$且与点$A$相距$40\\sqrt 2$海里的位置$B$, 经过$40$分钟又测得该船已行驶到点$A$北偏东$45^\\circ+\\arcsin\\dfrac{\\sqrt{26}}{26}$且与点$A$相距$10\\sqrt{13}$海里的位置$C$.\\\\\n(1) 求该船的行驶速度(单位: 海里$/$小时);\\\\\n(2) 若该船不改变航行方向继续行驶, 判断它是否会进入警戒水域, 并说明理由.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.5]\n \\draw (0,0) node [below] {$E$} -- (0,5.5) node [left] {$A$} coordinate (A);\n \\draw (0,5.5) -- ++ (45:{4*sqrt(2)}) coordinate (B) node [right] {$B$};\n \\draw (A) ++ ({45-asin(1/sqrt(26))}:{sqrt(13)}) coordinate (C) node [right] {$C$} -- (B);\n \\draw (C) -- (A);\n \\end{tikzpicture}\n\\end{center}",
"objs": [
"K0317002B"
],
@ -78090,7 +78092,7 @@
},
"003164": {
"id": "003164",
"content": "*设函数$f(x)=\\dfrac{2\\sin x\\cos x+\\dfrac 52}{\\sin x+\\cos x}, 0\\le x\\le \\dfrac{\\pi}2$, 求$f(x)$的最大值与最小值.",
"content": "设函数$f(x)=\\dfrac{2\\sin x\\cos x+\\dfrac 52}{\\sin x+\\cos x}, 0\\le x\\le \\dfrac{\\pi}2$, 求$f(x)$的最大值与最小值.",
"objs": [
"K0320002B"
],
@ -78159,7 +78161,7 @@
},
"003167": {
"id": "003167",
"content": "设$A>0$, $\\omega>0$, $0\\le \\varphi<2\\pi$. 如图为定义在$\\mathbf{R}$上的函数$f(x)=A\\sin (\\omega x+\\varphi)$的图像的一部分, 则$f(x)$的解析式为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.8]\n \\draw [->] (-1,0) -- (7,0) node [below] {$x$};\n \\draw [->] (0,-3) -- (0,3) node [left] {$y$};\n \\draw (0,0) node [below right] {$O$};\n \\draw [domain = -pi/6:25*pi/12, samples = 1000] plot (\\x, {2*sin(2*\\x/3/pi*180+20)});\n \\draw [dashed] (7*pi/12,2) -- (0,2) node [left] {$2$};\n \\draw [dashed] (25*pi/12,0) node [above] {$\\dfrac{25\\pi}{12}$} --++ (0,-2) -- (0,-2) node [left] {$-2$};\n \\draw (-pi/6,0) node [below] {$-\\dfrac{\\pi}{6}$};\n \\end{tikzpicture}\n\\end{center}",
"content": "设$A>0$, $\\omega>0$, $0\\le \\varphi<2\\pi$. 如图为定义在$\\mathbf{R}$上的函数$f(x)=A\\sin (\\omega x+\\varphi)$的图像的一部分, 则$f(x)$的解析式为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.5]\n \\draw [->] (-1,0) -- (7,0) node [below] {$x$};\n \\draw [->] (0,-3) -- (0,3) node [left] {$y$};\n \\draw (0,0) node [below right] {$O$};\n \\draw [domain = -pi/6:25*pi/12, samples = 1000] plot (\\x, {2*sin(2*\\x/3/pi*180+20)});\n \\draw [dashed] (7*pi/12,2) -- (0,2) node [left] {$2$};\n \\draw [dashed] (25*pi/12,0) node [above] {$\\dfrac{25\\pi}{12}$} --++ (0,-2) -- (0,-2) node [left] {$-2$};\n \\draw (-pi/6,0) node [below] {$-\\dfrac{\\pi}{6}$};\n \\end{tikzpicture}\n\\end{center}",
"objs": [
"K0323003B"
],
@ -78341,7 +78343,7 @@
},
"003175": {
"id": "003175",
"content": "已知函数$f(x)=(2\\sin(x+\\dfrac{\\pi}3)+\\sin x)\\cos x-\\sqrt 3\\sin^2 x$.\\\\\n(1) 求函数$f(x)$的值域与周期;\\\\\n(2) 若$x\\in [0,\\dfrac{\\pi}2]$, 求$f(x)$的单调递减区间;\\\\\n(3) *设常数$a>0$, 若函数$y=f(x)$的图像关于直线$x=a$对称, 求$a$的最小值;\\\\\n(4) 设常数$m\\in \\mathbf{R}$, 若存在$x_0\\in [0,\\dfrac{5\\pi}{12}]$, 使得$mf(x_0)-2=0$成立, 求$m$的取值范围.",
"content": "已知函数$f(x)=(2\\sin(x+\\dfrac{\\pi}3)+\\sin x)\\cos x-\\sqrt 3\\sin^2 x$.\\\\\n(1) 求函数$f(x)$的值域与周期;\\\\\n(2) 若$x\\in [0,\\dfrac{\\pi}2]$, 求$f(x)$的单调递减区间;\\\\\n(3) 设常数$a>0$, 若函数$y=f(x)$的图像关于直线$x=a$对称, 求$a$的最小值;\\\\\n(4) 设常数$m\\in \\mathbf{R}$, 若存在$x_0\\in [0,\\dfrac{5\\pi}{12}]$, 使得$mf(x_0)-2=0$成立, 求$m$的取值范围.",
"objs": [
"K0319005B",
"K0320002B",
@ -78367,7 +78369,7 @@
},
"003176": {
"id": "003176",
"content": "设$A\\ne 0$, $\\omega>0$, $-\\dfrac{\\pi}2<\\varphi<\\dfrac{\\pi}2$, 函数$f(x)=A\\sin(\\omega x+\\varphi)$的部分图像如图所示, 则$f(x)$的解析式为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.4]\n \\draw [->] (-4,0) -- (11,0) node [below] {$x$};\n \\draw [->] (0,-5) -- (0,5) node [left] {$y$};\n \\draw (0,0) node [below right] {$O$};\n \\draw [domain = -2:11, samples = 1000] plot (\\x, {-4*sin(180*\\x/8+45)});\n \\draw [dashed] (2,-4) -- (0,-4) node [left] {$-4$} (10,4) -- (0,4) node [left] {$4$};\n \\draw (-2,0) node [above] {$-2$};\n \\draw (6,0) node [below] {$6$};\n \\end{tikzpicture}\n\\end{center}",
"content": "设$A\\ne 0$, $\\omega>0$, $-\\dfrac{\\pi}2<\\varphi<\\dfrac{\\pi}2$, 函数$f(x)=A\\sin(\\omega x+\\varphi)$的部分图像如图所示, 则$f(x)$的解析式为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[>=latex, line cap = round, scale = 0.3]\n \\draw [->] (-4,0) -- (11,0) node [below] {$x$};\n \\draw [->] (0,-5) -- (0,5) node [left] {$y$};\n \\draw (0,0) node [below right] {$O$};\n \\draw [domain = -2:11, samples = 1000] plot (\\x, {-4*sin(180*\\x/8+45)});\n \\draw [dashed] (2,-4) -- (0,-4) node [left] {$-4$} (10,4) -- (0,4) node [left] {$4$};\n \\draw (-2,0) node [above] {$-2$};\n \\draw (6,0) node [below] {$6$};\n \\end{tikzpicture}\n\\end{center}",
"objs": [
"K0321004B"
],
@ -78484,7 +78486,7 @@
},
"003181": {
"id": "003181",
"content": "*设常数$a\\in \\mathbf{R}$. 若函数$y=\\sin 2x+a\\cos 2x$的图像关于直线$x=-\\dfrac{\\pi}6$对称, 则$a=$\\blank{50}.",
"content": "设常数$a\\in \\mathbf{R}$. 若函数$y=\\sin 2x+a\\cos 2x$的图像关于直线$x=-\\dfrac{\\pi}6$对称, 则$a=$\\blank{50}.",
"objs": [
"K0321001B"
],
@ -99291,7 +99293,7 @@
},
"004119": {
"id": "004119",
"content": "如图, $A,B,C$三地在以$O$为圆心的圆形区域边界上, $AB=30$公里, $AC=10$公里, $\\angle BAC=60^\\circ$, $D$是圆形区域外一景点, $\\angle DBC=90^\\circ$, $\\angle DCB=60^\\circ$.\n\\begin{center}\n \\begin{tikzpicture}\n \\draw (0,0) node [left] {$A$} -- (3,0) node [right] {$B$} -- (60:1) node [above] {$C$} coordinate (C) -- (0,0);\n \\draw (1.5,-0.288675) node [below] {$O$} circle (1.52752523);\n \\filldraw (1.5,-0.288675) circle (0.03);\n \\draw (43.90:6.245) node [above] {$D$} coordinate (D) -- (C) (D) -- (3,0) (D) -- (0,0);\n \\end{tikzpicture}\n\\end{center}\n(1) $O$、$A$相距多少公里(精确到小数点后两位)?\n(2) 若一汽车从$A$处出发, 以每小时$50$公里的速度沿公路$AD$行驶到$D$处, 需要多少小时(精确到小数点后两位)?",
"content": "如图, $A,B,C$三地在以$O$为圆心的圆形区域边界上, $AB=30$公里, $AC=10$公里, $\\angle BAC=60^\\circ$, $D$是圆形区域外一景点, $\\angle DBC=90^\\circ$, $\\angle DCB=60^\\circ$.\n\\begin{center}\n \\begin{tikzpicture}\n \\draw (0,0) node [left] {$A$} -- (3,0) node [right] {$B$} -- (60:1) node [above] {$C$} coordinate (C) -- (0,0);\n \\draw (1.5,-0.288675) node [below] {$O$} circle (1.52752523);\n \\filldraw (1.5,-0.288675) circle (0.03);\n \\draw (43.90:6.245) node [above] {$D$} coordinate (D) -- (C) (D) -- (3,0) (D) -- (0,0);\n \\end{tikzpicture}\n\\end{center}\n(1) $O$、$A$相距多少公里(精确到小数点后两位)?\\\\\n(2) 若一汽车从$A$处出发, 以每小时$50$公里的速度沿公路$AD$行驶到$D$处, 需要多少小时(精确到小数点后两位)?",
"objs": [
"K0317002B"
],
@ -104415,7 +104417,7 @@
},
"004328": {
"id": "004328",
"content": "经济订货批量模型, 是目前大多数工厂、企业等最常采用的订货方式, 即某种物资在单位时间的需求量为某常数, 经过某段时间后, 存储量消耗下降到零, 此时开始订货并随即到货, 然后开始下一个存储周期. 该模型适用于整批间隔进货、不允许缺货的存储问题. 具体如下:\\\\\n年存储成本费$T$(元)关于每次订货$x$(单位: 吨)的函数关系为$T(x)=\\dfrac{Bx}2+\\dfrac{AC}x$, 其中$A$为年需求量, $B$为每单位物资的年存储费, $C$为每次订货费.\\\\\n某化工厂需用甲醇作为原料, 年需求量为$6000$吨, 每吨存储费为$120$元/年, 每次订货费为$2500$元.\n(1) 若该化工厂每次订购$300$吨甲醇, 求年存储成本费;\\\\\n(2) 每次需订购多少吨甲醇, 可使该化工厂年存储成本费最少? 最少费用为多少?",
"content": "经济订货批量模型, 是目前大多数工厂、企业等最常采用的订货方式, 即某种物资在单位时间的需求量为某常数, 经过某段时间后, 存储量消耗下降到零, 此时开始订货并随即到货, 然后开始下一个存储周期. 该模型适用于整批间隔进货、不允许缺货的存储问题. 具体如下:\\\\\n年存储成本费$T$(元)关于每次订货$x$(单位: 吨)的函数关系为$T(x)=\\dfrac{Bx}2+\\dfrac{AC}x$, 其中$A$为年需求量, $B$为每单位物资的年存储费, $C$为每次订货费.\\\\\n某化工厂需用甲醇作为原料, 年需求量为$6000$吨, 每吨存储费为$120$元/年, 每次订货费为$2500$元.\\\\\n(1) 若该化工厂每次订购$300$吨甲醇, 求年存储成本费;\\\\\n(2) 每次需订购多少吨甲醇, 可使该化工厂年存储成本费最少? 最少费用为多少?",
"objs": [
"K0222002B"
],
@ -113044,7 +113046,7 @@
},
"004672": {
"id": "004672",
"content": "在$\\triangle ABC$中, $b=2,c=1$, $\\angle B-\\angle C=\\dfrac{\\pi}2$, 则$\\triangle ABC$的周长为\\blank{50}.",
"content": "在$\\triangle ABC$中, $b=2,c=1$, $B-C=\\dfrac{\\pi}2$, 则$\\triangle ABC$的周长为\\blank{50}.",
"objs": [
"K0315003B"
],
@ -234717,7 +234719,6 @@
"id": "010109",
"content": "求下列各式中$x$的值(其中$x>0$):\n(1) $x^3=27$;\\\\\n(2) $x^4=121$;\\\\\n(3) $x^\\frac 32=1000$;\\\\\n(4) $x^{-\\frac 43}=\\dfrac{16}{625}$.",
"objs": [
"K0324006B",
"K0203002B",
"K0201004B"
],
@ -253602,7 +253603,7 @@
},
"010965": {
"id": "010965",
"content": "已知全集$U=\\mathbf{R}$, 集合$A=\\{x||x-1|>1\\}$, $B=\\{x|\\dfrac{x-3}{x+1}<0\\}$, 则$\\complement _UA\\cap B=$\\blank{50}.",
"content": "已知全集$U=\\mathbf{R}$, 集合$A=\\{x||x-1|>1\\}$, $B=\\{x|\\dfrac{x-3}{x+1}<0\\}$, 则$\\overline{A}\\cap B=$\\blank{50}.",
"objs": [],
"tags": [
""
@ -253665,7 +253666,9 @@
"same": [
"000499"
],
"related": [],
"related": [
"030023"
],
"remark": "",
"space": ""
},
@ -253801,7 +253804,9 @@
"20220817\t王伟叶"
],
"same": [],
"related": [],
"related": [
"030024"
],
"remark": "",
"space": ""
},
@ -281706,5 +281711,77 @@
],
"remark": "",
"space": ""
},
"030023": {
"id": "030023",
"content": "若$S_n$是等差数列$\\{a_n\\}$($n\\in \\mathbf{N}$且$n\\ge 1$): $-1,2,5,8,\\cdots$的前$n$项和, 则$S_n=$\\blank{50}.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届高三上学期周末卷3试题3-20220919修改",
"edit": [
"20220817\t王伟叶",
"20220919\t徐慧"
],
"same": [],
"related": [
"010967"
],
"remark": "",
"space": ""
},
"030024": {
"id": "030024",
"content": "已知数列$\\{a_n\\}$($n\\in \\mathbf{N}^*$), 若$a_1=1$, $a_{n+1}+a_n=(\\dfrac 12)^n$, 则$a_{2n}=$\\blank{50}.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届高三上学期周末卷3试题9-20220919修改",
"edit": [
"20220817\t王伟叶",
"20220919\t徐慧"
],
"same": [],
"related": [
"010973"
],
"remark": "",
"space": ""
},
"030025": {
"id": "030025",
"content": "若函数$f(x)=\\sqrt{kx^2+4kx+3}$的定义域为$\\mathbf{R}$, 则实数$k$的取值范围为\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2016届创新班作业\t1131-函数与函数的三要素-20220919修改",
"edit": [
"20220625\t王伟叶",
"20220919\t徐慧"
],
"same": [],
"related": [
"001166"
],
"remark": "",
"space": ""
}
}