修改14995答案

This commit is contained in:
WangWeiye 2023-05-26 11:40:22 +08:00
parent 34d0e46b6f
commit 98d3e0074d
2 changed files with 2 additions and 2 deletions

View File

@ -1,6 +1,6 @@
import os,re,json import os,re,json
"""这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭, 随后运行第二个代码块""" """这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭, 随后运行第二个代码块"""
problems = "14725 ,14931" problems = "14995"
def generate_number_set(string,dict): def generate_number_set(string,dict):
string = re.sub(r"[\n\s]","",string) string = re.sub(r"[\n\s]","",string)

View File

@ -392638,7 +392638,7 @@
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "解答题", "genre": "解答题",
"ans": "(1) $2,5,8,11,8,5,2$;\\\\\n(2) $k=13$时$S_{2k-1}$取到最大, 最大值为$626$;\\\\\n(3) 共有四种满足要求的数列:\\\\\n第一种: $1,2,\\cdots,2^{m-2},2^{m-1},2^{m-1},2^{m-2},\\cdots,2,1$($2m$项), $S_{2022}=\\begin{cases}2^{m+1}-2^{2m-2022}-1, & 1500<m\\le 2022,\\\\2^{2022}-1, & m \\ge 2022;\\end{cases}$\\\\\n第二种: $1,2,\\cdots,2^{m-2},2^{m-1},2^{m-2},\\cdots,2,1$($2m-1$项), $S_{2022}=\\begin{cases}3\\cdot 2^{m+1}-2^{2m-2023}-1, & 1500<m\\le 2022,\\\\2^{2022}-1, & m \\ge 2022;\\end{cases}$\\\\\n第三种: $2^{m-1},2^{m-2},\\cdots,2,1,1,2,\\cdots,2^{m-2},2^{m-1}$($2m$项), $S_{2022}=\\begin{cases}2^m+2^{2022-m}-2, & 1500<m\\le 2022,\\\\2^m-2^{m-2022}, & m \\ge 2022;\\end{cases}$\\\\\n第四种: $2^{m-1},2^{m-2},\\cdots,2,1,2,\\cdots,2^{m-2},2^{m-1}$($2m$项), $S_{2022}=\\begin{cases}2^m+2^{2023-m}-3, & 1500<m\\le 2022,\\\\2^m-2^{m-2022}, & m \\ge 2022;\\end{cases}$", "ans": "(1) $2,5,8,11,8,5,2$;\\\\\n(2) $k=13$时$S_{2k-1}$取到最大, 最大值为$626$;\\\\\n(3) 共有四种满足要求的数列:\\\\\n第一种: $1,2,\\cdots,2^{m-2},2^{m-1},2^{m-1},2^{m-2},\\cdots,2,1$($2m$项), $S_{2022}=\\begin{cases}2^{m+1}-2^{2m-2022}-1, & 1500<m\\le 2022,\\\\2^{2022}-1, & m \\ge 2022;\\end{cases}$\\\\\n第二种: $1,2,\\cdots,2^{m-2},2^{m-1},2^{m-2},\\cdots,2,1$($2m-1$项), $S_{2022}=\\begin{cases}3\\cdot 2^{m-1}-2^{2m-2023}-1, & 1500<m\\le 2022,\\\\2^{2022}-1, & m \\ge 2022;\\end{cases}$\\\\\n第三种: $2^{m-1},2^{m-2},\\cdots,2,1,1,2,\\cdots,2^{m-2},2^{m-1}$($2m$项), $S_{2022}=\\begin{cases}2^m+2^{2022-m}-2, & 1500<m\\le 2022,\\\\2^m-2^{m-2022}, & m \\ge 2022;\\end{cases}$\\\\\n第四种: $2^{m-1},2^{m-2},\\cdots,2,1,2,\\cdots,2^{m-2},2^{m-1}$($2m$项), $S_{2022}=\\begin{cases}2^m+2^{2023-m}-3, & 1500<m\\le 2022,\\\\2^m-2^{m-2022}, & m \\ge 2022;\\end{cases}$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],