录入交大附中三模试题及答案

This commit is contained in:
weiye.wang 2023-06-02 21:46:24 +08:00
parent 10d977cc6e
commit 9d0b127e5a
3 changed files with 464 additions and 107 deletions

View File

@ -1,5 +1,5 @@
#修改起始id,出处,文件名 #修改起始id,出处,文件名
starting_id = 17444 starting_id = 17465
raworigin = "" raworigin = ""
filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目12.tex" filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目12.tex"
editor = "20230602\t王伟叶" editor = "20230602\t王伟叶"

View File

@ -1,126 +1,63 @@
usages ans
000573 17465
p20230529 2023届高三03班 0.690 $\{-1,1\}$
17466
$\dfrac{\sqrt{2}}{2}$
000618 17467
p20230518 2023届高三11班 0.952 $(-\infty,-3]\cup (1,+\infty)$
p20230518 2023届高三12班 1.000
p20230518 2023届高三01班 0.900
p20230518 2023届高三06班 0.974
p20230518 2023届高三09班 0.967
17468
$-\dfrac{1}{8}$
000622 17469
p20230518 2023届高三11班 0.619 $\pi$
p20230518 2023届高三12班 0.739
p20230518 2023届高三01班 0.900
p20230518 2023届高三06班 0.921
p20230518 2023届高三09班 0.767
17470
$x=4$
000625 17471
p20230518 2023届高三11班 0.429 $28$
p20230518 2023届高三12班 0.565
p20230518 2023届高三01班 0.933
p20230518 2023届高三06班 0.921
p20230518 2023届高三09班 0.467
17472
$8.5$
000616 17473
p20230518 2023届高三12班 1.000 $(-3,+\infty)$
p20230518 2023届高三06班 0.947
17474
$95.5$
000617 17475
p20230518 2023届高三12班 1.000 $(-4,0)cup \{2\sqrt{2}-2\}$
p20230518 2023届高三06班 1.000
p20230518 2023届高三09班 1.000
17476
$1518.5$
000624 17477
p20230518 2023届高三12班 0.870 A
p20230518 2023届高三09班 0.967
17478
D
013307 17479
p20230519 2023届高三11班 0.636 B
p20230519 2023届高三12班 0.773
p20230519 2023届高三08班 0.645
p20230519 2023届高三09班 0.821
17480
B
000637 17481
p20230519 2023届高三11班 0.905 (1) $a_n=n$, $b_n=2^{n-1}$; (2) 证明略
p20230519 2023届高三08班 0.923
p20230519 2023届高三09班 0.929
17482
(1) $\dfrac{\pi}{4}$; (2) $\dfrac{\sqrt{3}}{3}$
030154 17483
p20230519 2023届高三11班 0.286 (1) $y=27\times (\dfrac{4}{3})^x$, $x\ge 0$; (2) $9$分钟
p20230519 2023届高三12班 0.208
p20230519 2023届高三09班 0.286
000636
p20230519 2023届高三12班 0.958
p20230519 2023届高三01班 1.000
p20230519 2023届高三06班 0.975
p20230519 2023届高三09班 0.964
000654
p20230526 2023届高三11班 0.316
p20230526 2023届高三12班 0.524
p20230526 2023届高三01班 0.846
p20230526 2023届高三06班 0.707
p20230526 2023届高三08班 0.667
p20230526 2023届高三09班 0.611
000655
p20230526 2023届高三11班 0.474
p20230526 2023届高三12班 0.476
p20230526 2023届高三08班 0.333
p20230526 2023届高三09班 0.500
030162
p20230526 2023届高三12班 0.857
p20230526 2023届高三08班 1.000
p20230526 2023届高三09班 0.833
000669
p20230526 2023届高三12班 0.737
p20230526 2023届高三01班 1.000
p20230526 2023届高三06班 0.949
p20230526 2023届高三09班 0.870
000672
p20230526 2023届高三12班 0.684
p20230526 2023届高三09班 0.826
000673
p20230526 2023届高三12班 0.368
p20230526 2023届高三01班 0.750
p20230526 2023届高三06班 0.692
p20230526 2023届高三09班 0.522
000675
p20230526 2023届高三12班 0.526
p20230526 2023届高三01班 0.750
p20230526 2023届高三06班 0.744
p20230526 2023届高三09班 0.478
000685
p20230530 2023届高三12班 0.857
p20230530 2023届高三01班 1.000
p20230530 2023届高三06班 0.925
p20230530 2023届高三08班 0.897
17484
(1) $6$; (2) $-4$; (3) $(2,0)$或$(-\dfrac{2}{7},-\dfrac{12}{7})$
17485
(1) 证明略; (2) $\dfrac{\mathrm{e}}{2}$; (3) $(-\dfrac{27}{\mathrm{e}^3},0)\cup (0,+\infty)$

View File

@ -451298,6 +451298,426 @@
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
}, },
"017465": {
"id": "017465",
"content": "已知集合$A=\\{x \\| x | \\leq 1\\}, B=\\{-1,1,3,5\\}$, 则$A \\cap B=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$\\{-1,1\\}$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题1",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017466": {
"id": "017466",
"content": "复数$z=\\dfrac{1-2 \\mathrm{i}}{3+\\mathrm{i}}$的模为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$\\dfrac{\\sqrt{2}}{2}$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题2",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017467": {
"id": "017467",
"content": "不等式$\\dfrac{x+3}{x-1} \\geq 0$的解集为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$(-\\infty,-3]\\cup (1,+\\infty)$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题3",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017468": {
"id": "017468",
"content": "已知幂函数$y=f(x)$的图像过点$(\\dfrac{1}{2}, 8)$, 则$f(-2)=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$-\\dfrac{1}{8}$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题4",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017469": {
"id": "017469",
"content": "已知函数$f(x)=\\sin 2 x+2 \\sqrt{3} \\cos ^2 x$, 则函数$f(x)$的最小正周期是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$\\pi$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题5",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017470": {
"id": "017470",
"content": "由函数的观点, 不等式$2^x+\\log _4 x=17$的解是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$x=4$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题6",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017471": {
"id": "017471",
"content": "$(\\dfrac{1}{x}-\\sqrt{x})^8$的展开式中含$x$项的系数为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$28$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题7",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017472": {
"id": "017472",
"content": "某单位为了解该单位党员开展学习党史知识活动情况, 随机抽取了部分党员, 对他们一周的党史学习时间进行了统计, 统计数据如下表所示:\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|}\n\\hline 党史学习时间(小时) & 7 & 8 & 9 & 10 & 11 \\\\\n\\hline 党员人数 & 6 & 10 & 9 & 8 & 7 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n则该单位党员一周学习党史时间的第$40$百分位数是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$8.5$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题8",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017473": {
"id": "017473",
"content": "若存在实数$a$, 使得$x=1$是方程$(x+a)^2=3 x+b$的解, 但不是方程$x+a=\\sqrt{3 x+b}$的解, 则实数$b$的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$(-3,+\\infty)$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题9",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017474": {
"id": "017474",
"content": "若随机变量$X \\sim N(105,19^2)$, $Y \\sim N(100,9^2)$, 若$P(X \\leq A)=P(Y \\leq A)$, 那么实数$A$的值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$95.5$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题10",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017475": {
"id": "017475",
"content": "已知曲线$C_1: |y|=x+2$与曲线$C_2: (x-a)^2+y^2=4$恰有两个公共点, 则实数$a$的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$(-4,0)cup \\{2\\sqrt{2}-2\\}$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题11",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017476": {
"id": "017476",
"content": "函数$y=f(x)$是最小正周期为$4$的偶函数, 且在$x \\in[-2,0]$时, $f(x)=2 x+1$, 若存在$x_1$、$x_2$、$\\cdots$、$x_n$满足$0 \\leq x_1<x_2<\\cdots<x_n$, 且$|f(x_1)-f(x_2)|+|f(x_2)-f(x_3)|+\\cdots$$+|f(x_{n-1})-f(x_n)|=2023$, 则$n+x_n$的最小值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "$1518.5$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题12",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017477": {
"id": "017477",
"content": "设$\\lambda \\in \\mathbf{R}$, 则``$\\lambda=1$''是``直线$3 x+(\\lambda-1) y=1$与直线$\\lambda x+(1-\\lambda) y=2$平行''的\\bracket{20}.\n\\twoch{充分不必要条件}{必要不充分条件}{充要条件}{既不充分也不必要条件}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "A",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题13",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017478": {
"id": "017478",
"content": "函数$y=f(x)$的导函数$y=f'(x)$的图像如图所示, 则函数$y=f(x)$的图像可能是\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1.4,0) -- (1.4,0) node [below] {$x$};\n\\draw [->] (0,-0.6) -- (0,0.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -1:1.4] plot (\\x,{pow(\\x-0.2,3)-\\x+0.2});\n\\end{tikzpicture}\n\\end{center}\n\\fourch{\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1.4,0) -- (1.4,0) node [below] {$x$};\n\\draw [->] (0,-0.6) -- (0,0.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -1:1.4] plot (\\x,{-(\\x+1)*(\\x-1.3)*(\\x+0.5)*(\\x-0.2)/1.5});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1.4,0) -- (1.4,0) node [below] {$x$};\n\\draw [->] (0,-0.6) -- (0,0.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -1:1.4] plot (\\x,{(\\x+1)*(\\x-1.3)*(\\x+0.5)*(\\x-0.2)/1.5});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1.4,0) -- (1.4,0) node [below] {$x$};\n\\draw [->] (0,-0.6) -- (0,0.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -1:1.4] plot (\\x,{-2.5*(0.05 + 0.192*\\x - 0.44* \\x*\\x - 0.2*pow(\\x,3)+ pow(\\x,4)/4)});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex]\n\\draw [->] (-1.4,0) -- (1.4,0) node [below] {$x$};\n\\draw [->] (0,-0.6) -- (0,0.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -1:1.4] plot (\\x,{2.5*(0.15 + 0.192*\\x - 0.44* \\x*\\x - 0.2*pow(\\x,3)+ pow(\\x,4)/4)});\n\\end{tikzpicture}}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "D",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题14",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017479": {
"id": "017479",
"content": "已知函数$f(x)=a x^2+|x+a+1|$为偶函数, 则不等式$f(x)>0$的解集为\\bracket{20}.\n\\fourch{$\\varnothing$}{$(-1,0) \\cup(0,1)$}{$(-1,1)$}{$(-\\infty,-1) \\cup(1,+\\infty)$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "B",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题15",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017480": {
"id": "017480",
"content": "已知$n \\in \\mathbf{N}$, $n\\ge 1$, 集合$A=\\{\\sin (\\dfrac{k \\pi}{n}) | k \\in \\mathbf{N},\\ 0 \\leq k \\leq n\\}$, 若集合$A$恰有$8$个子集, 则$n$的可能值有\\bracket{20}个.\n\\fourch{$1$}{$2$}{$3$}{$4$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "B",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题16",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"017481": {
"id": "017481",
"content": "已知$\\{a_n\\}$为等差数列, $\\{b_n\\}$为等比数列, $a_1=b_1=1$, $a_5=5(a_4-a_3)$, $b_5=4(b_4-b_3)$.\\\\\n(1) 求$\\{a_n\\}$和$\\{b_n\\}$的通项公式;\\\\\n(2) 记$\\{a_n\\}$的前$n$项和为$S_n$, 求证: $S_n S_{n+2}<S_{n+1}^2$($n \\in \\mathbf{N}$, $n \\ge 1$).",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "(1) $a_n=n$, $b_n=2^{n-1}$; (2) 证明略",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题17",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"017482": {
"id": "017482",
"content": "如图, $PD \\perp$平面$ABCD$, 四边形$ABCD$为直角梯形, $AB\\parallel CD$, $\\angle ADC=90^{\\circ}$, $PD=CD=2AD=2AB=2$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [above right] {$D$} coordinate (D);\n\\draw (0,2,0) node [above] {$P$} coordinate (P);\n\\draw (0,0,1) node [left] {$A$} coordinate (A);\n\\draw (1,0,1) node [below] {$B$} coordinate (B);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (P)--(A)--(B)--(C)--cycle(P)--(B);\n\\draw [dashed] (A)--(D)--(C)(D)--(B)(D)--(P);\n\\end{tikzpicture}\n\\end{center}\n(1) 求异面直线$AB$与$PC$所成角的大小;\\\\\n(2) 求二面角$B-PC-D$的余弦值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "(1) $\\dfrac{\\pi}{4}$; (2) $\\dfrac{\\sqrt{3}}{3}$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题18",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"017483": {
"id": "017483",
"content": "流行性感冒简称流感, 是流感病毒引起的急性呼吸道感染, 也是一种传染性强、传播速度快的疾病, 了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义, 某科研团队在培养基中放入一定是某种细菌进行研究. 经过$2$分钟菌落的覆盖面积为$48 \\text{mm}^2$, 经过$3$分钟覆盖面积为$64 \\text{mm}^2$, 后期其蔓延速度越来越快; 菌落的覆盖面积$y$(单位: $\\text{mm}^2$) 与经过时间$x$(单位: $\\text{min}$) 的关系现有三个函数模型: \\textcircled{1} $y=k a^x$($k>0$, $a>1$); \\textcircled{2} $y=\\log _b x$($b>1$); \\textcircled{3} $y=p \\sqrt{x}+q$($p>0$)可供选择.\\\\\n(1) 选出你认为符合实际的函数模型, 说明理由, 并求出该模型的解析式;\\\\\n(2) 在理想状态下, 至少经过多少分钟培养基中菌落的覆盖面积能超过$300 \\text{mm}^2$?(结果保留到整数)",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "(1) $y=27\\times (\\dfrac{4}{3})^x$, $x\\ge 0$; (2) $9$分钟",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题19",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"017484": {
"id": "017484",
"content": "在平面直角坐标系$x O y$中, 已知椭圆$E: \\dfrac{x^2}{4}+\\dfrac{y^2}{3}=1$的左、右焦点分别为$F_1$、$F_2$, 点$A$在椭圆$E$上且在第一象限内, $AF_2 \\perp F_1F_2$, 直线$AF_1$与椭圆$E$相交于另一点$B$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2.5,0) -- (2.5,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\path [name path = elli,draw] (0,0) ellipse (2 and {sqrt(3)});\n\\draw (-1,0) node [above left] {$F_1$} coordinate (F_1);\n\\draw (1,0) node [below] {$F_2$} coordinate (F_2);\n\\path [name path = AF2] (F_2) --++ (0,2);\n\\path [name intersections = {of = AF2 and elli, by = A}];\n\\draw (A) node [above] {$A$} --(F_2); \n\\path [name path = AB] (A) -- ($(F_1)!-0.5!(A)$);\n\\path [name intersections = {of = AB and elli, by = B}];\n\\draw (A)--(B) node [left] {$B$} -- (O) -- cycle;\n\\end{tikzpicture}\n\\end{center}\n(1) 求$\\triangle AF_1F_2$的周长;\\\\\n(2) 在$x$轴上任取一点$P$, 直线$AP$与椭圆$E$的右准线相交于点$Q$, 求$\\overrightarrow{OP} \\cdot \\overrightarrow{QP}$的最小值;\\\\\n(3)设点$M$在椭圆$E$上, 记$\\triangle OAB$与$\\triangle MAB$的面积分别为$S_1$、$S_2$, 若$S_2=3S_1$, 求点$M$的坐标.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "(1) $6$; (2) $-4$; (3) $(2,0)$或$(-\\dfrac{2}{7},-\\dfrac{12}{7})$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题20",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"017485": {
"id": "017485",
"content": "记$y=f'(x)$、$y=g'(x)$分别为函数$y=f(x)$、$y=g(x)$的导函数, 若存在$x_0 \\in \\mathbf{R}$, 满足$f(x_0)=g(x_0)$且$f'(x_0)=g'(x_0)$, 则称$x_0$为函数$f(x)$与$g(x)$的一个``$S$点''.\\\\\n(1) 证明: 函数$y=x$与$y=x^2+2 x-2$不存在``$S$点'';\\\\\n(2) 若函数$y=a x^2-1$与$y=\\ln x$存在``$S$点'', 求实数$a$的值;\\\\\n(3) 已知$f(x)=-x^2+a$, $g(x)=\\dfrac{b \\mathrm{e}^x}{x}$, 若存在实数$a>0$, 使函数$y=f(x)$与$y=g(x)$在区间$(0,+\\infty)$内存在``$S$点'', 求实数$b$的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "(1) 证明略; (2) $\\dfrac{\\mathrm{e}}{2}$; (3) $(-\\dfrac{27}{\\mathrm{e}^3},0)\\cup (0,+\\infty)$",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届交大附中三模试题21",
"edit": [
"20230602\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"020001": { "020001": {
"id": "020001", "id": "020001",
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.", "content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",