20221214 afternoon 收录虹口青浦一模

This commit is contained in:
WangWeiye 2022-12-14 17:11:33 +08:00
parent 258a6678b6
commit 9e54e3bba5
7 changed files with 998 additions and 113 deletions

View File

@ -2,14 +2,14 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"首个空闲id: 12487 , 直至 020000\n",
"首个空闲id: 12529 , 直至 020000\n",
"首个空闲id: 20227 , 直至 030000\n",
"首个空闲id: 30502 , 直至 999999\n"
]

View File

@ -9,28 +9,27 @@
"name": "stdout",
"output_type": "stream",
"text": [
"题号: 012487 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012488 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012489 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012490 , 字段: tags 中已添加数据: 第三单元\n",
"题号: 012491 , 字段: tags 中已添加数据: 第五单元\n",
"题号: 012492 , 字段: tags 中已添加数据: 第五单元\n",
"题号: 012493 , 字段: tags 中已添加数据: 第九单元\n",
"题号: 012494 , 字段: tags 中已添加数据: 第七单元\n",
"题号: 012495 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012496 , 字段: tags 中已添加数据: 第八单元\n",
"题号: 012497 , 字段: tags 中已添加数据: 第四单元\n",
"题号: 012498 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012499 , 字段: tags 中已添加数据: 第八单元\n",
"题号: 012500 , 字段: tags 中已添加数据: 第六单元\n",
"题号: 012501 , 字段: tags 中已添加数据: 第三单元\n",
"题号: 012502 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012503 , 字段: tags 中已添加数据: 第三单元\n",
"题号: 012504 , 字段: tags 中已添加数据: 第六单元\n",
"题号: 012505 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012506 , 字段: tags 中已添加数据: 第七单元\n",
"题号: 012507 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012507 , 字段: tags 中已添加数据: 第四单元\n"
"题号: 012529 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012530 , 字段: tags 中已添加数据: 第五单元\n",
"题号: 012531 , 字段: tags 中已添加数据: 第四单元\n",
"题号: 012532 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012533 , 字段: tags 中已添加数据: 第九单元\n",
"题号: 012534 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012535 , 字段: tags 中已添加数据: 第八单元\n",
"题号: 012536 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012537 , 字段: tags 中已添加数据: 第七单元\n",
"题号: 012538 , 字段: tags 中已添加数据: 第三单元\n",
"题号: 012539 , 字段: tags 中已添加数据: 第六单元\n",
"题号: 012540 , 字段: tags 中已添加数据: 第四单元\n",
"题号: 012541 , 字段: tags 中已添加数据: 第一单元\n",
"题号: 012542 , 字段: tags 中已添加数据: 第六单元\n",
"题号: 012543 , 字段: tags 中已添加数据: 第二单元\n",
"题号: 012544 , 字段: tags 中已添加数据: 第七单元\n",
"题号: 012545 , 字段: tags 中已添加数据: 第三单元\n",
"题号: 012546 , 字段: tags 中已添加数据: 第六单元\n",
"题号: 012547 , 字段: tags 中已添加数据: 第四单元\n",
"题号: 012548 , 字段: tags 中已添加数据: 第七单元\n",
"题号: 012549 , 字段: tags 中已添加数据: 第二单元\n"
]
}
],

View File

@ -1,88 +1,87 @@
tags
12487
12529
第一单元
12488
单元
12530
单元
12489
12531
第四单元
12532
第二单元
12490
第三单元
12491
第五单元
12492
第五单元
12493
12533
第九单元
12494
单元
12534
第二单元
12495
第一单元
12496
12535
第八单元
12497
第四单元
12498
第一单元
12499
第八单元
12500
第六单元
12501
第三单元
12502
12536
第二单元
12503
第三单元
12504
第六单元
12505
第二单元
12506
12537
第七单元
12507
第二单元
12538
第三单元
12539
第六单元
12540
第四单元
12541
第一单元
12542
第六单元
12543
第二单元
12544
第七单元
12545
第三单元
12546
第六单元
12547
第四单元
12548
第七单元
12549
第二单元

View File

@ -2,20 +2,20 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#修改起始id,出处,文件名\n",
"starting_id = 12487\n",
"origin = \"2023届浦区一模\"\n",
"starting_id = 12529\n",
"origin = \"2023届浦区一模\"\n",
"filename = r\"C:\\Users\\weiye\\Documents\\wwy sync\\临时工作区\\自拟题目6.tex\"\n",
"editor = \"20221213\\t王伟叶\""
"editor = \"20221214\\t王伟叶\""
]
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [

View File

@ -2,34 +2,34 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"012487 填空题\n",
"012488 填空题\n",
"012489 填空题\n",
"012490 填空题\n",
"012491 填空题\n",
"012492 填空题\n",
"012493 填空题\n",
"012494 填空题\n",
"012495 填空题\n",
"012496 填空题\n",
"012497 填空题\n",
"012498 填空题\n",
"012499 选择题\n",
"012500 选择题\n",
"012501 选择题\n",
"012502 选择题\n",
"012503 解答题\n",
"012504 解答题\n",
"012505 解答题\n",
"012506 解答题\n",
"012507 解答题\n"
"012529 填空题\n",
"012530 填空题\n",
"012531 填空题\n",
"012532 填空题\n",
"012533 填空题\n",
"012534 填空题\n",
"012535 填空题\n",
"012536 填空题\n",
"012537 填空题\n",
"012538 填空题\n",
"012539 填空题\n",
"012540 填空题\n",
"012541 选择题\n",
"012542 选择题\n",
"012543 选择题\n",
"012544 选择题\n",
"012545 解答题\n",
"012546 解答题\n",
"012547 解答题\n",
"012548 解答题\n",
"012549 解答题\n"
]
}
],

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
@ -481,7 +481,11 @@
"modified_data = modified_data.replace(r\"\\lim _{n \\rightarrow \\infty}\",r\"\\displaystyle\\lim_{n\\to\\infty}\")\n",
"#mathpix的顿号修改\n",
"modified_data = modified_data.replace(r\" 、 \",r\"$、$\")\n",
"\n",
"#改slant等\n",
"modified_data = modified_data.replace(r\"slant\",\"\")\n",
"modified_data = modified_data.replace(r\"\\mid\",\"|\")\n",
"modified_data = re.sub(r\"\\\\mathrm\\{\\\\mathrm\\{i\\}\\}\",r\"\\\\mathrm{i}\",modified_data)\n",
"modified_data = modified_data.replace(\",$\",\", $\")\n",
"\n",
"setCopy(modified_data)\n",
"\n",

View File

@ -308139,6 +308139,889 @@
"remark": "",
"space": "12ex"
},
"012508": {
"id": "012508",
"content": "不等式$\\dfrac x{x+2} \\leq 0$的解集为\\blank{50}.",
"objs": [],
"tags": [
"第一单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题1",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012509": {
"id": "012509",
"content": "对于正实数$x$, 代数式$x+\\dfrac 4x$的最小值为\\blank{50}.",
"objs": [],
"tags": [
"第一单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题2",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012510": {
"id": "012510",
"content": "已知一个球的半径为$3$, 则这个球的体积为\\blank{50}.",
"objs": [],
"tags": [
"第六单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题3",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012511": {
"id": "012511",
"content": "在$(x+\\dfrac 1{\\sqrt x})^7$的二项展开式中$x$项的系数为\\blank{50}.",
"objs": [],
"tags": [
"第八单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题4",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012512": {
"id": "012512",
"content": "设$m, n \\in \\mathbf{R}$, $\\mathrm{i}$为虚数单位, 若$1-\\sqrt 3 \\mathrm{i}$是关于$x$的二次方程$x^2+m x+n=0$的一个虚根, 则$m+n=$\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题5",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012513": {
"id": "012513",
"content": "已知首项为$2$的等比数列$\\{b_n\\}$的公比为$\\dfrac 13$, 则这个数列所有项的和为\\blank{50}.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题6",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012514": {
"id": "012514",
"content": "设曲线$y=\\ln x+2 x$的斜率为$3$的切线为$l$, 则$l$的方程为\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题7",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012515": {
"id": "012515",
"content": "第$5$届中国国际进口博览会在上海举行, 某高校派出了包括甲同学在内的$4$名同学参加了连续$5$天的志愿者活动. 已知甲同学参加了$2$天的活动, 其余同学各参加了$1$天的活动, 则甲同学参加连续两天活动的概率为\\blank{50}. (结果用分数表示)",
"objs": [],
"tags": [
"第八单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题8",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012516": {
"id": "012516",
"content": "设$a, b \\in \\mathbf{R}$, 若函数$f(x)=\\lg|a+\\dfrac 4{2-x}|+b$为奇函数, 则$a+b=$\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题9",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012517": {
"id": "012517",
"content": "设函数$f(x)=\\cos (\\omega x+\\varphi)$(其中$\\omega>0$, $|\\varphi|<\\dfrac{\\pi}2)$, 若函数$y=f(x)$图像的对称轴$x=\\dfrac{\\pi}6$与其对称中心的最小距离为$\\dfrac{\\pi}8$, 则$f(x)=$\\blank{50}.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题10",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012518": {
"id": "012518",
"content": "在$\\triangle ABC$中, $AB=5$, $AC=6$, $\\cos A=\\dfrac 15$, $O$是$\\triangle ABC$的外心, 若$\\overrightarrow{OP}=x \\overrightarrow{OB}+y \\overrightarrow{OC}$, 其中$x, y \\in[0,1]$, 则动点$P$的轨迹所覆盖图形的面积为\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题11",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012519": {
"id": "012519",
"content": "已知$F_1, F_2$是双曲线$C: \\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=1$($a, b>0$)的左、右焦点, 过$F_2$的直线交双曲线的右支于$A, B$两点, 且$|AF_1|=2|AF_2|$, $\\angle AF_1F_2=\\angle F_1BF_2$, 则在下列结论中, 正确结论的序号为\\blank{50}.\\\\\n\\textcircled{1} 双曲线$C$的离心率为$2$;\\\\\n\\textcircled{2} 双曲线$C$的一条渐近线的斜率为$\\sqrt 2$;\\\\\n\\textcircled{3} 线段$AB$的长为$6 a$;\\\\\n\\textcircled{4} $\\triangle AF_1F_2$的面积为$\\sqrt {15} a^2$.",
"objs": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题12",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012520": {
"id": "012520",
"content": "设$m \\in \\mathbf{R}$, 已知直线$l: y=m x+1$与圆$C: x^2+y^2=1$, 则``$m>0$''是``直线$l$与圆$C$相交''的\\bracket{20}.\n\\twoch{充分不必要条件}{必要不充分条件}{充要条件}{既不充分也不必要条件}",
"objs": [],
"tags": [
"第七单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题13",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012521": {
"id": "012521",
"content": "若复数$z$满足$|z|<1$且$|\\bar z+\\dfrac 1z|=\\dfrac 52$, 则$|z|=$\\bracket{20}.\n\\fourch{$\\dfrac 45$}{$\\dfrac 34$}{$\\dfrac 23$}{$\\dfrac 12$}",
"objs": [],
"tags": [
"第五单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题14",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012522": {
"id": "012522",
"content": "已知$F$是椭圆$C_1: \\dfrac{x^2}4+\\dfrac{y^2}3=1$与抛物线$C_2: y^2=2 p x(p>0)$的一个共同焦点, $C_1$与$C_2$相交于$A, B$两点, 则线段$AB$的长等于\\bracket{20}.\n\\fourch{$\\dfrac 23 \\sqrt 6$}{$\\dfrac 43 \\sqrt 6$}{$\\dfrac 53$}{$\\dfrac{10}3$}",
"objs": [],
"tags": [
"第七单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题15",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012523": {
"id": "012523",
"content": "已知函数$f(x)=\\sin \\dfrac{\\pi x}3$, 数列$\\{a_n\\}$满足$a_1=1$, 且$a_{n+1}=(1+\\dfrac 1n) a_n+\\dfrac 1n$($n$为正整数). 则$f(a_{2022})=$\\bracket{20}.\n\\fourch{$-1$}{$1$}{$-\\dfrac{\\sqrt 3}2$}{$\\dfrac{\\sqrt 3}2$}",
"objs": [],
"tags": [
"第四单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题16",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012524": {
"id": "012524",
"content": "设$\\triangle ABC$的内角$A, B, C$所对的边分别为$a, b, c$, 已知$2 \\cos (\\pi+A)+\\sin (\\dfrac{\\pi}2+2A)+\\dfrac 32=0$.\\\\\n(1) 求角$A$;\\\\\n(2) 若$c-b=\\dfrac{\\sqrt 3}3 a$, 求证: $\\triangle ABC$是直角三角形.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题17",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012525": {
"id": "012525",
"content": "在等差数列$\\{a_n\\}$中, $a_1=2$, 且$a_2, a_3+2, a_8$构成等比数列.\\\\\n(1) 求数列$\\{a_n\\}$的通项公式;\\\\\n(2) 令$b_n=2^{a_n}+9$, 记$S_n$为数列$\\{b_n\\}$的前$n$项和, 若$S_n \\geq 2022$, 求正整数$n$的最小值.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题18",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012526": {
"id": "012526",
"content": "如图, 在三棱柱$ABC-A_1B_1C_1$中, 底面$ABC$是以$AC$为斜边的等腰直角三角形, 侧面$AA_1C_1C$为菱形, 点$A_1$在底面上的投影为$AC$的中点$D$, 且$AB=2$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.5]\n\\draw (0,0,0) node [below] {$D$} coordinate (D);\n\\draw (-1,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,0) node [right] {$C$} coordinate (C);\n\\draw (0,0,1) node [below] {$B$} coordinate (B);\n\\draw (0,{sqrt(3)},0) node [left] {$A_1$} coordinate (A_1);\n\\draw ($(B)+(A_1)-(A)$) node [below right] {$B_1$} coordinate (B_1);\n\\draw ($(C)+(A_1)-(A)$) node [right] {$C_1$} coordinate (C_1);\n\\draw ($(A_1)!0.5!(B_1)$) node [above right] {$E$} coordinate (E);\n\\draw (A) -- (B) -- (C) (A_1) -- (B_1) -- (C_1);\n\\draw (A) -- (A_1) -- (C_1) -- (C) (B) -- (B_1);\n\\draw [dashed] (B) -- (D) -- (A_1) (D) -- (E) (A) -- (C);\n\\end{tikzpicture}\n\\end{center}(1) 求证: $BD \\perp CC_1$;\\\\\n(2) 求点$C$到侧面$AA_1B_1B$的距离;\\\\\n(3) 在线段$A_1B_1$上是否存在点$E$, 使得直线$DE$与侧面$AA_1B_1B$所成角的正弦值为$\\dfrac{\\sqrt 6}7$? 若存在, 请求出$A_1E$的长; 若不存在, 请说明理由.",
"objs": [],
"tags": [
"第六单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题19",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012527": {
"id": "012527",
"content": "本市某区对全区高中生的身高(单位: 厘米)进行统计, 得到如下的频率分布直方图.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, xscale = 0.6, yscale = 100]\n\\draw [->] (-0,0) -- (0.1,0) -- (0.2,0.0008) -- (0.4,-0.0008) -- (0.5,0) -- (10,0) node [below] {身高/厘米};\n\\draw [->] (0,-0) -- (0,0.035) node [left] {$\\dfrac{\\text{频率}}{\\text{组距}}$};\n\\draw (0,0) node [below left] {$O$};\n\\foreach \\i/\\j in {150/0.022,160/0.027,170/0.025,180/0.015,190/0.01,200/0.001} \n{\\draw ({(\\i-130)/10},0) node [below] {\\small $\\i$} --++ (0,\\j) --++ (1,0) --++ (0,{-\\j});\n\\draw [dashed] (0,\\j) node [left] {\\small $\\j$} -- ({(\\i-130)/10},\\j);};\n\\draw (8,0) node [below] {\\small $210$};\n\\end{tikzpicture}\n\\end{center}\n(1) 若数据分布均匀, 记随机变量$X$为各区间中点所代表的身高, 写出$X$的分布及期望;\\\\\n(2) 已知本市身高在区间$[180,210]$的市民人数约占全市总人数的$10 \\%$, 且全市高中生约占全市总人数的$1.2 \\%$. 现在要以该区本次统计数据估算全市高中生身高情况, 从本市市民中任取$1$人, 若此人的身高位于区间$[180,210]$, 试估计此人是高中生的概率;\\\\\n(3) 现从身高在区间$[170,190)$的高中生中分层抽样抽取一个$80$人的样本. 若身高在区间$[170,180)$中样本的均值为$176$厘米, 方差为$10$; 身高在区间$[180,190)$中样本的均值为$184$厘米, 方差为$16$, 试求这$80$人的方差.",
"objs": [],
"tags": [
"第八单元",
"第九单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题20",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012528": {
"id": "012528",
"content": "设$a>0$, 已知函数$f(x)=(x-2)^3-a x$.\\\\\n(1) 求函数$y=f(x)$的单调区间;\\\\\n(2) 对于函数$y=f(x)$的极值点$x_0$, 存在$x_1$($x_1 \\neq x_0$), 使得$f(x_1)=f(x_0)$, 试问对任意的正数$a$, $x_1+2 x_0$是否为定值? 若是, 求出这个定值; 若不是, 请说明理由;\\\\\n(3) 若函数$g(x)=|f(x)|$在区间$[0,6]$上的最大值为$40$, 试求$a$的取值集合.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届虹口区一模试题21",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012529": {
"id": "012529",
"content": "已知集合$A=\\{1,2,3,4\\}$, $B=\\{x |(x-1)(x-5)<0\\}$, 则$A \\cap B=$\\blank{50}.",
"objs": [],
"tags": [
"第一单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题1",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012530": {
"id": "012530",
"content": "若复数$z=\\dfrac{a+\\mathrm{i}}{\\mathrm{i}}$(其中$\\mathrm{i}$为虚数单位)的实部与虚部相等, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题2",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012531": {
"id": "012531",
"content": "从等差数列$84,80,76,72, \\cdots$的第\\blank{50}项起, 各项均为负值.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题3",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012532": {
"id": "012532",
"content": "不等式$2^{x^2-2 x-3}<(\\dfrac 12)^{3(x-1)}$的解集为\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题4",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012533": {
"id": "012533",
"content": "在一次射击训练中, 某运动员$5$次射击的环数依次是$9,10,9,7,10$, 则该组数据的方差是\\blank{50}.",
"objs": [],
"tags": [
"第九单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题5",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012534": {
"id": "012534",
"content": "已知函数$f(x)=x^3-2 x$, 则$f(x)$在点$(1, f(1))$处的切线的倾斜角为\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题6",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012535": {
"id": "012535",
"content": "若$(x+\\dfrac{\\sqrt a}{x^2})^6$的展开式的常数项是$45$, 则常数$a$的值为\\blank{50}.",
"objs": [],
"tags": [
"第八单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题7",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012536": {
"id": "012536",
"content": "若函数$y=f(x)$的定义域和值域分别为$A=\\{1,2,3\\}$和$B=\\{1,2\\}$, 则$y=f(x)$是单调函数的概率是\\blank{50}.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题8",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012537": {
"id": "012537",
"content": "已知空间三点$A(-1,3,1)$, $B(2,4,0)$, $C(0,2,4)$, 则以$\\overrightarrow{AB}$、$\\overrightarrow{AC}$为一组邻边的平行四边形的面积大小为\\blank{50}.",
"objs": [],
"tags": [
"第七单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题9",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012538": {
"id": "012538",
"content": "在平面直角坐标系中, $A(0,0)$, $B(1,2)$两点绕定点$P$按顺时针方向旋转$\\theta$角后, 分别到$A'(4,4)$, $B'(5,2)$两点位置, 则$\\cos \\theta$的值为\\blank{50}.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题10",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012539": {
"id": "012539",
"content": "已知圆柱的轴截面是边长为$2$的正方形, $P$为上底面圆的圆心, $AB$为下底面圆的直径, $C$为下底面圆周上一点, 则三棱锥$P-ABC$外接球的体积为\\blank{50}.",
"objs": [],
"tags": [
"第六单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题11",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012540": {
"id": "012540",
"content": "已知数列$\\{a_n\\}$中, $a_2=3 a_1$, 记$\\{a_n\\}$的前$n$项和为$S_n$, 且满足$S_{n+1}+S_n+S_{n-1}=3 n^2+2$($n \\geq 2$, $n \\in \\mathbf{N}$). 若对任意$n \\in \\mathbf{N}$, $n\\ge 1$, 都有$a_n<a_{n+1}$, 则首项$a_1$的取值范围是\\blank{50}.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题12",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012541": {
"id": "012541",
"content": "已知$a, b$是非零实数, 则``$a>b$''是``$\\dfrac 1a<\\dfrac 1b$''的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分也非必要条件}",
"objs": [],
"tags": [
"第一单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题13",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012542": {
"id": "012542",
"content": "已知$m, n$是两条不同直线,$\\alpha, \\beta$是两个不同平面, 则下列命题错误的是\\bracket{20}.\n\\onech{若$\\alpha, \\beta$不平行, 则在$\\alpha$内不存在与$\\beta$平行的直线}{若$m , n$平行于同一平面, 则$m$与$n$可能异面}{若$m, n$不平行, 则$m$与$n$不可能垂直于同一平面}{若$\\alpha, \\beta$垂直于同一平面, 则$\\alpha$与$\\beta$可能相交}",
"objs": [],
"tags": [
"第六单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题14",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012543": {
"id": "012543",
"content": "已知函数$y=f(x)$定义域为$\\mathbf{R}$, 下列论断:\\\\ \n\\textcircled{1} 若对任意实数$a$, 存在实数$b$, 使得$f(a)=f(b)$, 且$b=-a$, 则$f(x)$是偶函数.\\\\\n\\textcircled{2} 若对任意实数$a$, 存在实数$b$, 使得$f(a)<f(b)$, 且$a<b$, 则$f(x)$是增函数.\\\\\n\\textcircled{3} 常数$T>0$, 若对任意实数$a$, 存在实数$b$, 使得$f(a)=f(b)$, 且$|a-b|=T$, 则$f(x)$是周期函数.\n其中正确的论断的个数是\\bracket{20}.\n\\fourch{$0$个}{$1$个}{$2$个}{$3$个}",
"objs": [],
"tags": [
"第二单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题15",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012544": {
"id": "012544",
"content": "在直角坐标平面$xOy$中, 已知两定点$F_1(-2,0)$与$F_2(2,0)$, $F_1$, $F_2$到直线$l$的距离之差的绝对值等于$2 \\sqrt 2$, 则平面上不在任何一条直线$l$上的点组成的图形面积是\\bracket{20}.\n\\fourch{$4 \\pi$}{$8$}{$2 \\pi$}{$4+\\pi$}",
"objs": [],
"tags": [
"第七单元"
],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题16",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012545": {
"id": "012545",
"content": "已知函数$f(x)=\\sqrt 3 \\sin x \\cos x-\\cos ^2 x$, $x \\in \\mathbf{R}$.\\\\\n(1) 求$f(x)$的单调递增区间;\\\\ \n(2) 求$f(x)$在区间$[-\\dfrac{\\pi}4, \\dfrac{\\pi}4]$上的最大值和最小值.",
"objs": [],
"tags": [
"第三单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题17",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012546": {
"id": "012546",
"content": "如图, 在正三棱柱$ABC-A_1B_1C_1$中, $E, F$分别为$BB_1$, $AC$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\def\\h{2}\n\\draw ({-\\l/2},0,0) node [left] {$A$} coordinate (A);\n\\draw (0,0,{\\l/2*sqrt(3)}) node [below] {$C$} coordinate (C);\n\\draw ({\\l/2},0,0) node [right] {$B$} coordinate (B);\n\\draw (A) ++ (0,\\h) node [left] {$A_1$} coordinate (A_1);\n\\draw (C) ++ (0,\\h) node [below right] {$C_1$} coordinate (C_1);\n\\draw (B) ++ (0,\\h) node [right] {$B_1$} coordinate (B_1);\n\\draw (A) -- (C) -- (B) (A) -- (A_1) (C) -- (C_1) (B) -- (B_1) (A_1) -- (C_1) -- (B_1) (A_1) -- (B_1);\n\\draw ($(B)!0.5!(B_1)$) node [right] {$E$} coordinate (E);\n\\draw ($(A)!0.5!(C)$) node [below left] {$F$} coordinate (F);\n\\draw [dashed] (F) -- (B) (E) -- (A_1);\n\\draw (A_1) -- (C) (C) -- (E);\n\\draw [dashed] (A) -- (B);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $BF\\parallel$平面$A_1EC$;\\\\ \n(2) 求证: 平面$A_1EC \\perp$平面$ACC_1A_1$.",
"objs": [],
"tags": [
"第六单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题18",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012547": {
"id": "012547",
"content": "流行性感冒是由流感病毒引起的急性呼吸道传染病. 某市去年$11$月份曾发生流感, 据统计, $11$月$1$日该市的新感染者有$30$人, 以后每天的新感染者比前一天的新感染者增加$50$人. 由于该市医疗部门采取措施, 使该种病毒的传播得到控制, 从$11$月$k+1$($9 \\leq k \\leq 29$, $k \\in \\mathbf{N}$)日起每天的新感染者比前一天的新感染者减少$20$人.\\\\\n(1) 若$k=9$, 求$11$月$1$日至$11$月$10$日新感染者总人数;\\\\\n(2) 若到$11$月$30$日止, 该市在这$30$天内的新感染者总人数为$11940$人, 问$11$月几日, 该市新感染者人数最多? 并求这一天的新感染者人数.",
"objs": [],
"tags": [
"第四单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题19",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012548": {
"id": "012548",
"content": "在平面直角坐标系$xOy$中, 已知椭圆$\\Gamma: \\dfrac{x^2}2+y^2=1$, 过右焦点$F$作两条互相垂直的弦$AB$, $CD$, 设$AB$, $CD$中点分别为$M$, $N$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.5]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-1.5) -- (0,1.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw (0,1.5) coordinate (S) (2,{2/3}) coordinate (T) (1,0) coordinate (F) node [below] {$F$};\n\\draw [name path = elli] (0,0) ellipse ({sqrt(2)} and 1);\n\\path [name path = l1] (S) -- ($(S)!1.5!(F)$);\n\\path [name path = l2] (T) -- ($(T)!2.5!(F)$);\n\\path [name intersections = {of = elli and l1, by = {A,B}}];\n\\draw (A) node [above] {$A$} coordinate (A)-- (B) node [below] {$B$} coordinate (B);\n\\path [name intersections = {of = elli and l2, by = {C,D}}];\n\\draw (C) node [right] {$C$} coordinate (C)-- (D) node [below] {$D$} coordinate (D);\n\\draw ($(A)!0.5!(B)$) node [above] {$M$} coordinate (M) -- ($(C)!0.5!(D)$) node [below] {$N$} coordinate (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 写出椭圆右焦点$F$的坐标及该椭圆的离心率;\\\\ \n(2) 证明: 直线$MN$必过定点, 并求出此定点坐标; \\\\\n(3) 若弦$AB, CD$的斜率均存在, 求$\\triangle FMN$面积的最大值.",
"objs": [],
"tags": [
"第七单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题20",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012549": {
"id": "012549",
"content": "设函数$f_1(x)=x^2+a \\mathrm{e}^x$(其中$a$是非零常数, $\\mathrm{e}$是自然对数的底), 记$f_n(x)=f_{n-1}'(x)$($n \\geq 2$, $n \\in \\mathbf{N}$).\\\\\n(1) 求对任意实数$x$, 都有$f_n(x)=f_{n-1}(x)$成立的最小整数$n$的值($n \\geq 2$, $n \\in \\mathbf{N}$);\\\\ \n(2) 设函数$g_n(x)=f_2(x)+f_3(x)+\\cdots+f_n(x)$, 若对任意$n \\geq 3$, $n \\in \\mathbf{N}$, $y=g_n(x)$都存在极值点$x=t_n$, 求证: 点$A_n(t_n, g_n(t_n))$($n \\geq 3$, $n \\in \\mathbf{N}$)在一定直线上, 并求出该直线方程;\\\\\n(3) 是否存在正整数$k$($k \\geq 2$)和实数$x_0$, 使$f_k(x_0)=f_{k-1}(x_0)=0$且对于任意$n \\in \\mathbf{N}$, $n\\ge 1$, $f_n(x)$至多有一个极值点, 若存在, 求出所有满足条件的$k$和$x_0$, 若不存在, 说明理由.",
"objs": [],
"tags": [
"第二单元"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届青浦区一模试题21",
"edit": [
"20221214\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"020001": {
"id": "020001",
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",