因高三第三轮复习讲义(转化)需要增加若干关联题目

This commit is contained in:
WangWeiye 2023-04-20 13:58:31 +08:00
parent 58f67cb062
commit a144e1234d
4 changed files with 145 additions and 13 deletions

View File

@ -1,6 +1,6 @@
import os,re,json
"""这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭, 随后运行第二个代码块"""
problems = "30227,30275"
problems = "31399"
def generate_number_set(string,dict):
string = re.sub(r"[\n\s]","",string)

View File

@ -1,8 +1,8 @@
import os,re,json,time
"""---设置原题目id与新题目id列表, 新id的数目不能小于旧id的数目---"""
old_ids = "754"
new_ids = "31396"
old_ids = "14993,14941,14933,14912,14937"
new_ids = "31397:31500"
"""---设置完毕---"""
"""---完成编辑后记得运行第二个单元格---"""

View File

@ -5,12 +5,12 @@ import os,re,json,time,sys
"""2: 测验卷与周末卷(填空题, 选择题, 解答题)"""
"""3: 日常选题讲义(一个section)"""
paper_type = 2 # 随后设置一下后续的讲义标题
paper_type = 1 # 随后设置一下后续的讲义标题
"""---设置题块编号---"""
problems = [
"015101,015102,015103,015104,015105,015106,015107,015108,015109,015110,015111,015112","015113,015114,015115,015116","015117,015118,015119,015120,015121"
"14987,14913,14990,14914","14911,14991,14992,14994,14946,14995"
]
@ -20,7 +20,7 @@ problems = [
if paper_type == 1:
enumi_mode = 0 #设置模式(1为整卷统一编号, 0为每一部分从1开始编号)
template_file = "模板文件/复习讲义模板.txt" #设置模板文件名
exec_list = [("标题数字待处理","05"),("标题文字待处理","易错题-概率与统计")] #设置讲义标题
exec_list = [("标题数字待处理","05"),("标题文字待处理","新情境中的问题")] #设置讲义标题
destination_file = "临时文件/"+exec_list[0][1]+"_"+exec_list[1][1] # 设置输出文件名
elif paper_type == 2:
enumi_mode = 1 #设置模式(1为整卷统一编号, 0为每一部分从1开始编号)

View File

@ -369643,7 +369643,9 @@
"20230411\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031400"
],
"remark": "",
"space": ""
},
@ -370042,7 +370044,11 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031399",
"014934",
"014935"
],
"remark": "",
"space": "12ex"
},
@ -370061,7 +370067,11 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031399",
"014933",
"014935"
],
"remark": "",
"space": "12ex"
},
@ -370080,7 +370090,11 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031399",
"014933",
"014934"
],
"remark": "",
"space": "12ex"
},
@ -370118,7 +370132,9 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031401"
],
"remark": "",
"space": ""
},
@ -370194,7 +370210,9 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031398"
],
"remark": "",
"space": "12ex"
},
@ -371182,7 +371200,9 @@
"20230412\t王伟叶"
],
"same": [],
"related": [],
"related": [
"031397"
],
"remark": "",
"space": ""
},
@ -462409,6 +462429,118 @@
"remark": "",
"space": ""
},
"031397": {
"id": "031397",
"content": "对于非零向量$\\overrightarrow {a}$、$\\overrightarrow {b}$, 定义一种向量的运算: $\\overrightarrow {a} \\otimes \\overrightarrow {b}=\\dfrac{\\overrightarrow {a} \\cdot \\overrightarrow {b}}{\\overrightarrow {b} \\cdot \\overrightarrow {b}}$. 设集合$P=\\{\\dfrac{n}{2} | n \\in \\mathbf{N}\\}$, 若非零向量$\\overrightarrow {a}$、$\\overrightarrow {b}$满足$\\overrightarrow {a} \\otimes \\overrightarrow {b} \\in P$, $\\overrightarrow {b} \\otimes \\overrightarrow {a} \\in P$, 且其夹角$\\theta \\in(\\dfrac{\\pi}{4}, \\dfrac{\\pi}{2})$, 求$\\overrightarrow {a} \\otimes \\overrightarrow {b}$的所有可能的值组成的集合.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届空中课堂学科精要名师点拨-探究学习型问题建立联系巧转化-20230420修改",
"edit": [
"20230412\t王伟叶",
"20230420\t周双"
],
"same": [],
"related": [
"014993"
],
"remark": "从14993改为解答题",
"space": "12ex"
},
"031398": {
"id": "031398",
"content": "已知函数$f(x)=2^x+x$, 若$a,b,c\\in \\mathbf{R}$, 满足$2f(b)=f(a)+f(c)$, 求证: $2b\\ge a+c$.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届空中课堂学科精要名师点拨-向数学家曹冲学转化-20230420修改",
"edit": [
"20230412\t王伟叶",
"20230420\t周双"
],
"same": [],
"related": [
"014941"
],
"remark": "修改自14941, 回避反函数",
"space": "12ex"
},
"031399": {
"id": "031399",
"content": "(1) 是否存在第一象限的角$\\alpha$和第三象限的角$\\beta$, 使得$\\tan \\alpha \\tan \\beta=\\tan (\\alpha-\\beta)$? 请说明理由;\\\\\n(2) 是否存在第二象限的角$\\alpha$和第四象限的角$\\beta$, 使得$\\tan \\alpha \\tan \\beta=\\tan (\\alpha-\\beta)$? 请说明理由;\\\\\n(3) 是否存在第一象限的角$\\alpha$和第三象限的角$\\beta$, 使得$\\sin \\alpha \\sin \\beta=\\sin (\\alpha-\\beta)$? 请说明理由.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届空中课堂学科精要名师点拨-向数学家曹冲学转化-20230420修改",
"edit": [
"20230412\t王伟叶",
"20230420\t周双"
],
"same": [],
"related": [
"014933",
"014934",
"014935"
],
"remark": "融合14933至14935",
"space": "12ex"
},
"031400": {
"id": "031400",
"content": "若方程$x^4+a x-4=0$的各个实根$x_1, x_2, \\cdots, x_k$($k \\leq 4$)所对应的点$(x_i, \\dfrac{4}{x_i})$($i=1,2, \\cdots, k$)均在直线$y=x$的同侧, 则实数$a$的取值范围是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届第三轮复习讲义-阅读新情境并作转化-20230420修改",
"edit": [
"20230411\t王伟叶",
"20230420\t周双"
],
"same": [],
"related": [
"014912"
],
"remark": "删去一个关于求解方式的提示",
"space": ""
},
"031401": {
"id": "031401",
"content": "如图, 棱长为$2$的正方体$ABCD-A_1B_1C_1D_1$中, $E$为棱$CC_1$的中点, 点$P$、$Q$分别为面$A_1B_1C_1D_1$和线段$B_1C$上的动点, 则$\\triangle PEQ$周长的最小值为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(C)!0.5!(C1)$) node [right] {$E$} coordinate (E);\n\\draw ($(B1)!0.3!(C)$) node [below] {$Q$} coordinate (Q);\n\\draw ($1/3*(A1)+1/3*(B1)+1/3*(C1)$) node [left] {$P$} coordinate (P);\n\\draw (B1)--(C)(E)--(Q);;\n\\draw [dashed] (Q)--(P)--(E);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2022届空中课堂学科精要名师点拨-向数学家曹冲学转化-20230420修改",
"edit": [
"20230412\t王伟叶",
"20230420\t周双"
],
"same": [],
"related": [
"014937"
],
"remark": "",
"space": ""
},
"040001": {
"id": "040001",
"content": "参数方程$\\begin{cases}x=3 t^2+4, \\\\ y=t^2-2\\end{cases}$($0 \\leq t \\leq 3$)所表示的曲线是\\bracket{20}.\n\\fourch{一支双曲线}{线段}{圆弧}{射线}",