20221127 night
This commit is contained in:
parent
ef1d05b5fa
commit
a7bb571e70
|
|
@ -2,7 +2,7 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
"0"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
|
|
@ -21,7 +21,7 @@
|
|||
"\n",
|
||||
"\"\"\"---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---\"\"\"\n",
|
||||
"keywords_dict_table = [\n",
|
||||
" {\"tags\":[\"二项式定理\"]}\n",
|
||||
" {\"tags\":[\"概率\"]}\n",
|
||||
"]\n",
|
||||
"\"\"\"---关键字设置完毕---\"\"\"\n",
|
||||
"# 示例: keywords_dict_table = [\n",
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
000333,000340,000350,000359,000373,000385,000393,000398,000410,000418,000435,000439,000455,000462,000470,000483,000502,000521,000532,000539,000563,000568,000580,000593,000600,000620,000632,000640,000658,000694,000722,000735,000737,000753,000774,000800,000811,000823,000828,000837,000849,000866,000873,000885,000906,000914,000929,000951,002611,002612,002613,002614,002615,002616,002617,002618,002619,002620,002621,002622,002623,002624,002625,002626,002627,002628,002629,002630,002631,002633,002634,002635,002636,002637,002639,003572,003573,003578,003583,003584,003594,003634,003654,003735,003750,003764,003811,003840,003851,003867,003883,003899,003942,003962,003976,003991,003997,004019,004020,004021,004027,004028,004030,004104,004127,004148,004170,004192,004211,004231,004250,004298,004342,004394,004430,004450,004475,004517,004536,004558,004625,004663,004678,004686,004711,004727,004747,007526,007527,007528,007529,007530,007531,007532,007533,007534,007535,007536,007537,007538,007539,007540,007541,007542,007543,007544,007545,007546,007547,007548,007549,007550,007551,007552,007553,007554,007555,007556,007557,007558,007559,007560,007561,007562,007563,007564,007565,007566,007567,007568,007569,007570,007571,007572,007573,007574,007575,007576,007577,007578,007580,007581,007582,007583,007584,007585,007586,007587,007588,007589,007590,007591,007592,007593,007594,007595,007596,007597,007598,007599,007600,007601,007602,007603,007604,007605,007606,007607,007608,007609,007610,007611,007612,007613,007614,007615,007616,007617,007618,007619,007620,007621,007622,007623,007625,007626,007627,007628,007629,007630,007631,007632,007633,007636,007637,007638,007639,007640,007641,007642,007643,007644,007645,007646,007647,007648,007649,007650,007651,007652,007653,007654,007655,007656,007657,007658,007659,007660,007661,007662,007663,007664,007676,007677,007678,007679,009303,009304,009305,009306,009307,009308,009309,009310,009311,009312,009313,009314,009315,009316,009317,009318,009319,009320,009325,009331,009334,009339,009343,009344,009407,009408,009411,009419,009421,009422,009945,009946,009947,009948,009990,010837,010875,010876,010877,010878,010879,010880,010881,010882,010883,010990,011030,011054,011137,011226,011269,011293,011308,011340,011347,011369,011396,011415,011442,011459,011498,011528,011628,011651,011703,011723,011993,012011,012026,030022,030071
|
||||
000218,000219,000220,000221,000222,000223,000224,000225,000226,000227,000228,000229,000230,000231,000332,000384,000391,000512,000564,000581,000601,000611,000624,000659,000672,000685,000695,000704,000714,000744,000765,000773,000779,000812,000829,000844,000889,000969,002640,002641,002642,002643,002644,002645,002646,002647,002648,002649,002650,002651,002652,002653,002654,002655,002656,002657,002658,002659,002660,002661,002662,002663,002664,002665,003574,003575,003585,003586,003598,003640,003660,003727,003734,003751,003787,003806,003825,003873,003887,003914,003947,003979,003983,003998,004031,004032,004033,004034,004035,004036,004037,004038,004039,004040,004041,004042,004043,004044,004045,004046,004087,004110,004150,004193,004212,004232,004257,004297,004324,004341,004535,004572,004573,004574,004575,004576,004577,004578,004579,004580,004581,004582,004583,004584,004585,004586,004587,004588,004589,004590,004591,004592,004593,004594,004595,004596,004597,004598,004599,004600,004601,004602,004603,004604,004605,004606,004607,004608,004609,004610,004611,004612,004613,004614,004615,004616,004617,004618,004647,004712,004750,009345,009346,009347,009348,009349,009350,009351,009352,009353,009354,009355,009356,009357,009359,009360,009361,009362,009363,009364,009365,009366,009391,009409,009410,009423,009425,009733,009734,009735,009736,009737,009738,009739,009740,009741,009742,009743,009744,009745,009746,009747,009748,009749,009750,009751,009752,009753,009754,009755,009943,009944,009949,009950,009951,009952,009953,009954,009955,009956,009957,009958,009959,009960,009961,009962,009963,009964,009965,009966,009967,009968,009969,009992,010005,010006,010007,010008,010009,010010,010011,010012,010013,010014,010015,010016,010534,010535,010536,010537,010538,010539,010540,010541,010542,010543,010544,010545,010546,010547,010548,010549,010550,010551,010552,010553,010554,010555,010556,010557,010558,010559,010560,010870,010871,010872,010873,010874,010884,010885,010886,010887,010888,010889,010890,010891,010892,010893,010894,010895,010896,010897,010898,010899,010900,010901,010902,010903,010950,011053,011117,011141,011250,011289,011312,011351,011354,011376,011397,011439,011480,011523,011583,011586,011609,011612,011634,011640,011654,011679,011682,012036,012046,030170,030171,030172,030173,030174,030175,030176,030177,030178,030179,030180,030181,030182,030183,030184,030185,030186,030187,030188,030189,030190,030191,030192,030193,030194,030276,030277,030433
|
||||
|
|
@ -7,15 +7,15 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"#修改起始id,出处,文件名\n",
|
||||
"starting_id = 12075\n",
|
||||
"origin = \"2023届华东师范大学一附中高三上学期期中考试\"\n",
|
||||
"starting_id = 30485\n",
|
||||
"origin = \"空中课堂必修第三册复习课例题\"\n",
|
||||
"filename = r\"C:\\Users\\Weiye\\Documents\\wwy sync\\临时工作区\\自拟题目4.tex\"\n",
|
||||
"editor = \"20221121\\t王伟叶\""
|
||||
"editor = \"20221127\\t王伟叶\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
|
@ -70,8 +70,8 @@
|
|||
" pid = str(id).zfill(6)\n",
|
||||
" if pid in pro_dict:\n",
|
||||
" duplicate_flag = True\n",
|
||||
" # NewProblem = CreateNewProblem(id = pid, content = p, origin = origin , dict = pro_dict,editor = editor)\n",
|
||||
" NewProblem = CreateNewProblem(id = pid, content = p, origin = origin + \"试题\" + str(id- starting_id+1), dict = pro_dict,editor = editor)\n",
|
||||
" NewProblem = CreateNewProblem(id = pid, content = p, origin = origin , dict = pro_dict,editor = editor)\n",
|
||||
" # NewProblem = CreateNewProblem(id = pid, content = p, origin = origin + \"试题\" + str(id- starting_id+1), dict = pro_dict,editor = editor)\n",
|
||||
" pro_dict[pid] = NewProblem\n",
|
||||
" id += 1\n",
|
||||
"\n",
|
||||
|
|
|
|||
|
|
@ -9,49 +9,36 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"012033 填空题\n",
|
||||
"012034 填空题\n",
|
||||
"012035 填空题\n",
|
||||
"012036 填空题\n",
|
||||
"012037 填空题\n",
|
||||
"012038 填空题\n",
|
||||
"012039 填空题\n",
|
||||
"012040 填空题\n",
|
||||
"012041 填空题\n",
|
||||
"012042 填空题\n",
|
||||
"012043 填空题\n",
|
||||
"012044 填空题\n",
|
||||
"012045 选择题\n",
|
||||
"012046 选择题\n",
|
||||
"012047 选择题\n",
|
||||
"012048 选择题\n",
|
||||
"012049 解答题\n",
|
||||
"012050 解答题\n",
|
||||
"012051 解答题\n",
|
||||
"012052 解答题\n",
|
||||
"012053 解答题\n",
|
||||
"012054 填空题\n",
|
||||
"012055 填空题\n",
|
||||
"012056 填空题\n",
|
||||
"012057 填空题\n",
|
||||
"012058 填空题\n",
|
||||
"012059 填空题\n",
|
||||
"012060 填空题\n",
|
||||
"012061 填空题\n",
|
||||
"012062 填空题\n",
|
||||
"012063 填空题\n",
|
||||
"012064 填空题\n",
|
||||
"012065 填空题\n",
|
||||
"012066 选择题\n",
|
||||
"012067 选择题\n",
|
||||
"012068 选择题\n",
|
||||
"012069 选择题\n",
|
||||
"012070 解答题\n",
|
||||
"012071 解答题\n",
|
||||
"012072 解答题\n",
|
||||
"012073 解答题\n",
|
||||
"012074 解答题\n",
|
||||
"030481 填空题\n"
|
||||
"012075 填空题\n",
|
||||
"012076 填空题\n",
|
||||
"012077 填空题\n",
|
||||
"012078 填空题\n",
|
||||
"012079 填空题\n",
|
||||
"012080 填空题\n",
|
||||
"012081 填空题\n",
|
||||
"012082 填空题\n",
|
||||
"012083 填空题\n",
|
||||
"012084 填空题\n",
|
||||
"012085 填空题\n",
|
||||
"012086 填空题\n",
|
||||
"012087 选择题\n",
|
||||
"012088 选择题\n",
|
||||
"012089 选择题\n",
|
||||
"012090 选择题\n",
|
||||
"012091 解答题\n",
|
||||
"012092 解答题\n",
|
||||
"012093 解答题\n",
|
||||
"012094 解答题\n",
|
||||
"012095 解答题\n",
|
||||
"030485 解答题\n",
|
||||
"030486 解答题\n",
|
||||
"030487 解答题\n",
|
||||
"030488 解答题\n",
|
||||
"030489 解答题\n",
|
||||
"030490 解答题\n",
|
||||
"030491 解答题\n",
|
||||
"030492 解答题\n",
|
||||
"030493 解答题\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
|
|||
|
|
@ -2,16 +2,16 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"开始编译教师版本pdf文件: 临时文件/二项式定理待赋目标_教师用_20221126.tex\n",
|
||||
"开始编译教师版本pdf文件: 临时文件/概率待赋目标_教师用_20221127.tex\n",
|
||||
"0\n",
|
||||
"开始编译学生版本pdf文件: 临时文件/二项式定理待赋目标_学生用_20221126.tex\n",
|
||||
"开始编译学生版本pdf文件: 临时文件/概率待赋目标_学生用_20221127.tex\n",
|
||||
"0\n"
|
||||
]
|
||||
}
|
||||
|
|
@ -33,7 +33,7 @@
|
|||
"\n",
|
||||
"\"\"\"---设置文件名---\"\"\"\n",
|
||||
"#目录和文件的分隔务必用/\n",
|
||||
"filename = \"临时文件/二项式定理待赋目标\"\n",
|
||||
"filename = \"临时文件/概率待赋目标\"\n",
|
||||
"\"\"\"---设置文件名结束---\"\"\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
|
|
|||
|
|
@ -295546,7 +295546,7 @@
|
|||
"content": "设集合$A=\\{x|(x-1)(x-4)<0\\}$, 集合$B=\\mathbf{Z}$, 则$A\\cap B=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295565,7 +295565,7 @@
|
|||
"content": "已知$\\mathrm{i}$为虚数单位, 则复数$z=\\dfrac{3+\\mathrm{i}}{2+\\mathrm{i}}$的模$|z|=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295584,7 +295584,7 @@
|
|||
"content": "方程$\\log_2(3x+4)=3$的解为$x=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295603,7 +295603,7 @@
|
|||
"content": "在二项式$(x+\\dfrac2x)^6$的展开式中, 常数项是\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295622,7 +295622,7 @@
|
|||
"content": "若圆锥侧面积为$20\\pi$, 且母线与底面所成角为$\\arccos \\dfrac 4\n5$, 则该圆锥的侧面积为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295641,7 +295641,7 @@
|
|||
"content": "设点$H(2,3)$, 若直线$l$经过点$H$, 且与直线$OH$垂直($O$为坐标原点), 则直线$l$的方程为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295660,7 +295660,7 @@
|
|||
"content": "函数$y=2\\cos\\left(x+\\dfrac{\\pi}{4}\\right)\\cos\\left(x-\\dfrac{\\pi}{4}\\right)+\\sqrt{3}\\sin 2x$的值域为\\blank{80}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295679,7 +295679,7 @@
|
|||
"content": "函数$y=\\dfrac{x}{x+1}$的图像是一个中心对称图形, 其对称中心的坐标为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295698,7 +295698,7 @@
|
|||
"content": "已知随机变量$X$的分布列为$\\begin{pmatrix}\n -1 & 0 & 1 \\\\\n \\dfrac 12 & \\dfrac 13 & \\dfrac 16 \n \\end{pmatrix}$, 另一个随机变量$Y$满足$X+2Y=4$, 则$Y$的期望$E[Y]=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295717,7 +295717,7 @@
|
|||
"content": "在由数字$1, 2, 3, 4, 5$组成的数字不重复的五位数中, 小于$50000$的奇数有\\blank{50}个.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295736,7 +295736,7 @@
|
|||
"content": "平面上的三个单位向量$\\overrightarrow{a}$, $\\overrightarrow{b}$, $\\overrightarrow{c}$满足$2\\overrightarrow{c}=3\\overrightarrow{a}+4\\overrightarrow{b}$, 则$\\overrightarrow{a}$, $\\overrightarrow{b}$, $\\overrightarrow{c}$两两间的夹角中, 最小的角的大小为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295755,7 +295755,7 @@
|
|||
"content": "设区间$(m,n)$($m<n$)的长度为$n-m$. 若$a,b\\in (0,+\\infty)$, 且不等式$(x^2-a)(x^2-b)$的解集是若干个长度之和为$4$的区间的并集, 则$\\dfrac{a+5}{b}$的最小值为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295774,7 +295774,7 @@
|
|||
"content": "已知$a,b$是实数, 则``$a>b$''是``$a^3+1>b^3+1$''的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分又非必要条件}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295793,7 +295793,7 @@
|
|||
"content": "演讲比赛共有$9$位评委分别给出某选手的原始评分, 评定该选手的成绩时, 从$9$个原始评分中去掉$1$个最高分、$1$个最低分, 得到$7$个有效评分. $7$个有效评分与$9$个原始评分相比, 不变的数字特征是\\bracket{20}.\n\\fourch{中位数}{平均数}{方差}{极差}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295812,7 +295812,7 @@
|
|||
"content": "已知$\\omega$是常数, 若函数$y=|\\sin (\\omega x+\\dfrac \\pi 3)|$图像的一条对称轴是直线$x=\\dfrac\\pi 6$. 则$\\omega$的值不可能在区间\\bracket{20}中.\n\\fourch{$(0,2]$}{$(2,4]$}{$(4,6]$}{$(6,8]$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295831,7 +295831,7 @@
|
|||
"content": "对于两个定义在$\\mathbf{R}$上的函数$y=f(x)$与$y=g(x)$, 构造新的函数$y=h(x)$如下: 对任意$x_0\\in \\mathbf{R}$, $h(x_0)=f(x_0)+g(x_0)$. 现已知$y=h(x)$是严格增函数, 对于以下两个命题: \n\\textcircled{1} $y=f(x)$与$y=g(x)$中至少有一个是严格增函数;\n\\textcircled{2} $y=f(x)$与$y=g(x)$中至少有一个无最大值.\n其中\\bracket{20}.\n\\fourch{\\textcircled{1}和\\textcircled{2}都是真命题}{只有\\textcircled{1}是真命题}{只有\\textcircled{2}是真命题}{没有真命题}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295850,7 +295850,7 @@
|
|||
"content": "如图, 设$P-ABCD$是底面为矩形的四棱锥, $PA\\perp$平面$ABCD$. $PA=AB=2$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (0,0,2) node [left] {$B$} coordinate (B);\n\\draw (3,0,2) node [right] {$C$} coordinate (C);\n\\draw (3,0,0) node [right] {$D$} coordinate (D);\n\\draw (0,2,0) node [left] {$P$} coordinate (P);\n\\draw (P) -- (B) -- (C) -- (D) -- (P) (P) -- (C);\n\\draw [dashed] (A) -- (P) (A) -- (B) (A) -- (D);\n\\end{tikzpicture}\n\\end{center}\n(1) 若$PC\\perp BD$, 求四棱锥$P-ABCD$的体积;\\\\\n(2) 若直线$PD$与平面$PAB$所成的角的大小为$\\arctan 2$, 求直线$PC$与平面$ABCD$所成的角的大小.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295862,14 +295862,14 @@
|
|||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": ""
|
||||
"space": "12ex"
|
||||
},
|
||||
"012092": {
|
||||
"id": "012092",
|
||||
"content": "设$a$是实常数, 并记$f(x)=x^3+ax^2+2x$.\\\\\n(1) 当$a=-\\dfrac{5}{2}$时, 求函数$y=f(x)$的单调减区间;\\\\ \n(2) 是否存在$a$, 使得函数$y=f(x)$在实数范围内有且仅有三个零点, 且三个零点可按某种顺序排列后成等差数列? 若存在, 求所有满足条件的$a$的值; 若不存在, 说明理由.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295881,14 +295881,14 @@
|
|||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": ""
|
||||
"space": "12ex"
|
||||
},
|
||||
"012093": {
|
||||
"id": "012093",
|
||||
"content": "如图, 某市郊外景区内一条笔直的公路$a$经过三个景点$A$、$B$、$C$. 景区管委会又开发了风景优美的景点$D$.经测量景点$D$位于景点$A$的北偏东$30^\\circ$方向$8$千米处, 且位于景点$B$的正北方向, 还位于景点$C$的北偏西$75^\\circ$方向上.已知$AB=5$千米.\n\\begin{center}\n \\begin{tikzpicture}[>=latex,scale = 0.25]\n \\draw [->] (6,8) -- (10,8) node [right] {东};\n \\draw [->] (6,8) -- (6,12) node [above] {北};\n \\draw [->] (0,0) node [below] {$A$} coordinate (A) -- (0,8) node [left] {$N$} coordinate (N);\n \\draw (A) --++ (60:8) node [above] {$D$} coordinate (D);\n \\draw (4,3) node [below] {$B$} coordinate (B) -- (D);\n \\draw [name path = linea] (A) -- ($(A)!2.2!(B)$) node [right] {$a$} coordinate (a);\n \\path [name path = DC] (D) --++ (-15:4);\n \\path [name intersections = {of = linea and DC, by = C}];\n \\draw (D) -- (C) node [below] {$C$};\n \\draw (60:2) arc (60:90:2);\n \\draw (75:4) node {$30^\\circ$};\n \\end{tikzpicture}\n\\end{center}\n(1) 景区管委会准备由景点$D$向景点$B$修一条笔直的公路, 不考虑其他因素, 求出这条公路的长(结果精确到$0.1$千米);\\\\\n(2) 求景点$C$与景点$D$之间的距离(结果精确到$0.1$千米).",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295900,14 +295900,14 @@
|
|||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": ""
|
||||
"space": "12ex"
|
||||
},
|
||||
"012094": {
|
||||
"id": "012094",
|
||||
"content": "已知数列$\\{a_n\\}$的通项公式为$a_n=2^n+\\lambda n$, 其中常数$\\lambda\\in \\mathbf{R}$.\\\\\n(1) 若$a_3=4a_2$, 求$\\lambda$的值;\\\\\n(2) 若$\\{a_n\\}$前$10$项的和为$1551$, 试分析$\\{a_n\\}$的单调性;\\\\\n(3) 对于常数$t$, 记集合$C_t=\\{n|a_n=t\\}$, 试求当$\\lambda$与$t$变化时, 集合$C_t$中元素个数的最大值.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295919,14 +295919,14 @@
|
|||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": ""
|
||||
"space": "12ex"
|
||||
},
|
||||
"012095": {
|
||||
"id": "012095",
|
||||
"content": "已知椭圆$E$的方程为$\\dfrac{x^2}{12}+\\dfrac{y^2}{4}=1$, $F_1(-2\\sqrt{2},0)$与$F_2(2\\sqrt{2},0)$是$E$的两个焦点, $A(0,-2)$是$E$的下顶点.\\\\\n(1) 设斜率为$1$的直线$l$过点$F_1$, 且与$E$交于$M,N$两点, 求弦$MN$的长;\\\\\n(2) 若$E$上一点$P$满足$|F_1P|=3|F_2P|$, 求$\\triangle F_1F_2P$的面积;\\\\\n(3) 是否存在椭圆$E$上, 且位于第一象限的点$Q$, 使得射线$QA$平分$\\angle F_1QF_2$? 若存在, 请写出一个满足条件的点$Q$的坐标并加以验证; 若不存在, 说明理由.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "",
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
|
|
@ -295938,7 +295938,7 @@
|
|||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": ""
|
||||
"space": "12ex"
|
||||
},
|
||||
"020001": {
|
||||
"id": "020001",
|
||||
|
|
@ -315090,5 +315090,176 @@
|
|||
],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030485": {
|
||||
"id": "030485",
|
||||
"content": "如图, 在正方体$ABCD-A_1B_1C_1D_1$中, 哪些棱所在的直线与直线$BD_1$是异面直线?\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw [dashed] (B) -- (D1);\n\\end{tikzpicture}\n\\end{center}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030486": {
|
||||
"id": "030486",
|
||||
"content": "如图, 点$P$是矩形$ABCD$所在平面外的一点, $M$、$N$分别是$AB$、$PC$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (D) ++ (0.2,1.5,0) node [above] {$P$} coordinate (P);\n\\draw (A) -- (B) -- (C) (P) -- (A) (P) -- (B) (P) -- (C);\n\\draw [dashed] (A) -- (D) -- (C) (P) -- (D);\n\\draw ($(P)!0.5!(C)$) node [above right] {$N$} coordinate (N);\n\\draw ($(A)!0.5!(B)$) node [below] {$M$} coordinate (M);\n\\draw [dashed] (M) -- (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $MN\\parallel$平面$PAD$;\\\\ \n(2) 若$\\triangle PAD$是等边三角形, 求异面直线$MN$与$BC$所成的角的大小;\\\\ \n(3) 设$Q$是线段$DC$上的一点, 若平面$PAD\\parallel$平面$MNQ$, 求点$Q$的位置.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030487": {
|
||||
"id": "030487",
|
||||
"content": "如图, 在长方体$ABCD-A_1B_1C_1D_1$中, $AB=BC=2$, $E$为$DD_1$上一点. \n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.8]\n\\def\\l{2}\n\\def\\m{2}\n\\def\\n{3}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(D)!0.5!(D1)$) node [left] {$E$} coordinate (E);\n\\draw [dashed] (A) -- (C) (B) -- (D);\n\\draw [dashed] (A) -- (E) -- (C);\n\\draw (B1) -- (D1);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: 平面$D_1DBB_1\\perp$平面$EAC$;\\\\\n(2) 若$DE=2$, 求$AE$与平面$D_1DBB_1$所成的角的大小;\\\\\n(3) 若$E$为$DD_1$的中点, 且$B_1D\\perp$平面$EAC$, 求$DD_1$的长度.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030488": {
|
||||
"id": "030488",
|
||||
"content": "如图, 在长方体$ABCD-A_1B_1C_1D_1$中, $AB=3$, $BC=4$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.5]\n\\def\\l{3}\n\\def\\m{4}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\end{tikzpicture}\n\\end{center}\n(1) 求点$A_1$到平面$B_1BDD_1$的距离;\\\\\n(2) 若$A_1B$和平面$B_1BDD_1$所成的角的大小为$\\arcsin \\dfrac{12}{25}$, 求$AA_1$的长度.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030489": {
|
||||
"id": "030489",
|
||||
"content": "如图, 在斜三棱柱$ABC-A_1B_1C_1$中, $\\angle A_1AC=\\angle ACB=\\dfrac{\\pi }2$, $\\angle AA_1C=\\dfrac{\\pi }6$, 侧棱$BB_1$与底面所成的角为$\\dfrac{\\pi }3$, $AA_1=4\\sqrt 3$, $BC=4$. 求斜三棱柱$ABC-A_1B_1C_1$的体积$V$. \n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.3]\n\\draw ({-2*sqrt(2)},0,0) node [below] {$A$} coordinate (A);\n\\draw ({2*sqrt(2)},0,0) node [below] {$B$} coordinate (B);\n\\draw (0,0,{-2*sqrt(2)}) node [above right] {$C$} coordinate (C);\n\\draw (A) -- (B);\n\\draw [dashed] (A) -- (C) -- (B);\n\\draw (A) ++ ({-sqrt(6)},6,{-sqrt(6)}) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ ({-sqrt(6)},6,{-sqrt(6)}) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ ({-sqrt(6)},6,{-sqrt(6)}) node [above] {$C_1$} coordinate (C1);\n\\draw [dashed] (C) -- (C1) (A1) -- (C);\n\\draw (A) -- (A1) (B) -- (B1) (A1) -- (B1) (A1) -- (C1) -- (B1); \n\\end{tikzpicture}\n\\end{center}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030490": {
|
||||
"id": "030490",
|
||||
"content": "如图, 圆锥$P-O$的底面直径和高均是$a$, 过$PO$的中点$O'$作平行于底面的截面, 以该截面为底面挖去一个圆柱, 求剩下几何体的体积和表面积.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.5]\n\\draw (0,0) node [left] {$O$} coordinate (O);\n\\draw (0,2) node [above] {$P$} coordinate (P);\n\\draw (0,1) node [left] {$O'$} coordinate (O1);\n\\draw (P) -- (-1,0) (P) -- (1,0);\n\\draw [dashed] (P) --++ (0,-2) --++ (1,0);\n\\draw [dashed] (-1,0) arc (180:0:1 and 0.25) (-0.5,1) arc (180:0:0.5 and 0.125);\n\\draw (-1,0) arc (180:360:1 and 0.25);\n\\draw [dashed] (-0.5,0) --++ (0,1) (0.5,0) --++ (0,1);\n\\draw (-0.5,1) arc (180:360:0.5 and 0.125);\n\\draw [dashed] (O) ellipse (0.5 and 0.125);\n\\end{tikzpicture}\n\\end{center}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030491": {
|
||||
"id": "030491",
|
||||
"content": "如图, 三棱锥$P-MNQ$中, $PM\\perp NQ$, $PM\\perp MN$, $NQ\\perp MN$. 若$MN=NQ=1$, 二面角$P-NQ-M$的大小为$\\dfrac{\\pi }4$, 求:\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.5]\n\\draw (0,0,0) node [left] {$M$} coordinate (M);\n\\draw ({sqrt(2)},0,0) node [right] {$Q$} coordinate (Q);\n\\draw ({sqrt(2)/2},0,{sqrt(2)/2}) node [below] {$N$} coordinate (N);\n\\draw (0,1,0) node [above] {$P$} coordinate (P);\n\\draw (M) -- (N) -- (Q) (P) -- (M) (P) -- (N) (P) -- (Q);\n\\draw [dashed] (M) -- (Q);\n\\end{tikzpicture}\n\\end{center}\n(1) 三棱锥$P-MNQ$的体积;\\\\\n(2) 点$M$到平面$PNQ$的距离. \n(3) 若点$E$为棱$PN$的中点, 点$F$为棱$PQ$的中点, 那么三棱锥$M-EFN$的体积是多少?",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030492": {
|
||||
"id": "030492",
|
||||
"content": "已知四棱柱$ABCD-A_1B_1C_1D_1$, 各棱长均为2, 且$\\angle ADC=\\dfrac{2\\pi }3$. 设$\\overrightarrow{DA}=\\overrightarrow{a}$, $\\overrightarrow{DC}=\\overrightarrow{b}$, $\\overrightarrow{DD_1}=\\overrightarrow{c}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (2,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (3,0,{-sqrt(3)}) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (1,0,{-sqrt(3)}) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0.5,{sqrt(14)/2},-0.5) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0.5,{sqrt(14)/2},-0.5) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0.5,{sqrt(14)/2},-0.5) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0.5,{sqrt(14)/2},-0.5) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\end{tikzpicture}\n\\end{center}\n(1)设$E$是棱$A_1D_1$的中点.\\\\\n\\textcircled{1} 试用$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$的线性组合表示$\\overrightarrow{EB}$;\\\\\n\\textcircled{2} 若$\\angle ADD_1=\\angle CDD_1=\\alpha$, $\\alpha \\in (\\dfrac{\\pi }3,\\dfrac{\\pi }2]$, 求$|\\overrightarrow{EB}|$的取值范围;\\\\\n(2)求证: 当且仅当$\\angle ADD_1=\\angle CDD_1$时, $AC\\perp$平面$DBB_1D_1$.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
},
|
||||
"030493": {
|
||||
"id": "030493",
|
||||
"content": "已知直四棱柱$ABCD-A_1B_1C_1D_1$, 各棱长均为$2$, 且$\\angle ADC=\\dfrac{2\\pi }3$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (2,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (3,0,{-sqrt(3)}) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (1,0,{-sqrt(3)}) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,2,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,2,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,2,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(A1)!0.5!(D1)$) node [above left] {$E$} coordinate (E);\n\\draw ($(A)!{2/3}!(B)$) node [below] {$F$} coordinate (F);\n\\draw [dashed] (E) -- (F);\n\\end{tikzpicture}\n\\end{center}\n(1)设$E$是$A_1D_1$中点, 点$F$满足$\\overrightarrow{AF}=2\\overrightarrow{FB}$.\\\\\n\\textcircled{1} 求异面直线$EF$与$DD_1$所成角的大小;\\\\\n\\textcircled{2} 求直线$EF$与平面$DBB_1D_1$所成角的大小;\\\\ \n(2)求平面$DBB_1D_1$与平面$BDC_1$所成锐二面角的大小;\\\\\n(3)求四面体$A_1C_1BD$的体积.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "空中课堂必修第三册复习课例题",
|
||||
"edit": [
|
||||
"20221127\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "12ex"
|
||||
}
|
||||
}
|
||||
Reference in New Issue