diff --git a/工具/寻找阶段末尾空闲题号.ipynb b/工具/寻找阶段末尾空闲题号.ipynb index f2e521be..e980626b 100644 --- a/工具/寻找阶段末尾空闲题号.ipynb +++ b/工具/寻找阶段末尾空闲题号.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -11,7 +11,7 @@ "text": [ "首个空闲id: 12075 , 直至 020000\n", "首个空闲id: 20227 , 直至 030000\n", - "首个空闲id: 30481 , 直至 999999\n" + "首个空闲id: 30483 , 直至 999999\n" ] } ], diff --git a/工具/添加题目到数据库.ipynb b/工具/添加题目到数据库.ipynb index fd32d3c1..3d332420 100644 --- a/工具/添加题目到数据库.ipynb +++ b/工具/添加题目到数据库.ipynb @@ -7,10 +7,10 @@ "outputs": [], "source": [ "#修改起始id,出处,文件名\n", - "starting_id = 30481\n", - "origin = \"自拟题目\"\n", + "starting_id = 12075\n", + "origin = \"2023届华东师范大学一附中高三上学期期中考试\"\n", "filename = r\"C:\\Users\\Weiye\\Documents\\wwy sync\\临时工作区\\自拟题目4.tex\"\n", - "editor = \"20221120\\t朱敏慧\"" + "editor = \"20221121\\t王伟叶\"" ] }, { diff --git a/工具/生成文件夹下的题号清单.ipynb b/工具/生成文件夹下的题号清单.ipynb index e8f99641..3c697d15 100644 --- a/工具/生成文件夹下的题号清单.ipynb +++ b/工具/生成文件夹下的题号清单.ipynb @@ -2,145 +2,343 @@ "cells": [ { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "赋能01.tex\n", - "0.95}{赋能01答题纸.png\n", - "(000326)\n", - "(000327)\n", - "(000328)\n", - "(000329)\n", - "(030021)\n", - "(000331)\n", - "(000332)\n", - "(030022)\n", - "(030026)\n", - "(000335)\n", + "周末卷01.tex\n", + "填空题\n", + "(010923)\n", + "(010924)\n", + "(010925)\n", + "(010926)\n", + "(030013)\n", + "(010928)\n", + "(010929)\n", + "(010930)\n", + "(030014)\n", + "(010932)\n", + "(010933)\n", + "(010934)\n", + "选择题\n", + "(010935)\n", + "(010936)\n", + "(010937)\n", + "(010938)\n", + "解答题\n", + "(010939)\n", + "(010940)\n", + "(010941)\n", + "(010942)\n", + "(010943)\n", "\n", "\n", "\n", - "赋能02.tex\n", - "0.95}{赋能02答题纸.png\n", - "(001750)\n", - "(000337)\n", - "(002675)\n", - "(000339)\n", - "(000340)\n", - "(000341)\n", - "(000342)\n", - "(000343)\n", - "(000344)\n", - "(000345)\n", + "周末卷02.tex\n", + "填空题\n", + "(010944)\n", + "(030017)\n", + "(010946)\n", + "(010947)\n", + "(010948)\n", + "(010949)\n", + "(010950)\n", + "(010951)\n", + "(010952)\n", + "(010953)\n", + "(010954)\n", + "(010955)\n", + "选择题\n", + "(010956)\n", + "(002874)\n", + "(010958)\n", + "(010959)\n", + "解答题\n", + "(010960)\n", + "(010961)\n", + "(010962)\n", + "(010963)\n", + "(010964)\n", "\n", "\n", "\n", - "赋能03.tex\n", - "0.95}{赋能03答题纸.png\n", - "(000346)\n", - "(000347)\n", - "(000348)\n", - "(000349)\n", - "(030071)\n", - "(000351)\n", - "(000352)\n", - "(030072)\n", - "(000354)\n", - "(030073)\n", + "周末卷03.tex\n", + "填空题\n", + "(003115)\n", + "(006264)\n", + "(003096)\n", + "(001472)\n", + "(006604)\n", + "(030027)\n", + "(030028)\n", + "选择题\n", + "(006305)\n", + "解答题\n", + "(006460)\n", + "(006463)\n", "\n", "\n", "\n", - "赋能04.tex\n", - "0.95}{赋能04答题纸.png\n", - "(000356)\n", - "(000357)\n", - "(030074)\n", - "(000359)\n", - "(000360)\n", - "(000361)\n", - "(000362)\n", - "(000363)\n", - "(000364)\n", - "(030075)\n", + "周末卷03_暂未使用.tex\n", + "填空题\n", + "(010965)\n", + "(010966)\n", + "(030023)\n", + "(010968)\n", + "(010969)\n", + "(010970)\n", + "(030025)\n", + "(010972)\n", + "(030024)\n", + "(010974)\n", + "(010975)\n", + "(010976)\n", + "选择题\n", + "(010977)\n", + "(002745)\n", + "(010979)\n", + "(010980)\n", + "解答题\n", + "(010981)\n", + "(010982)\n", + "(010983)\n", + "(010984)\n", + "(010985)\n", "\n", "\n", "\n", - "赋能05.tex\n", - "0.95}{赋能05答题纸.png\n", - "(000366)\n", - "(000367)\n", - "(000368)\n", - "(000369)\n", - "(030281)\n", - "(000371)\n", - "(000372)\n", - "(000373)\n", - "(000374)\n", - "(000375)\n", + "周末卷04.tex\n", + "填空题\n", + "(001853)\n", + "(030108)\n", + "(003355)\n", + "(000655)\n", + "(000724)\n", + "(001860)\n", + "(002038)\n", + "(030106)\n", + "(030107)\n", + "(003621)\n", + "选择题\n", + "(001846)\n", + "(002013)\n", + "(003703)\n", + "解答题\n", + "(001557)\n", + "(004702)\n", "\n", "\n", "\n", - "赋能06.tex\n", - "0.95}{赋能06答题纸.png\n", - "(001772)\n", - "(000377)\n", - "(000378)\n", - "(008356)\n", - "(008334)\n", - "(008080)\n", - "(000382)\n", - "(000383)\n", - "(000384)\n", - "(000385)\n", + "周末卷05.tex\n", + "填空题\n", + "(030169)\n", + "(030273)\n", + "(001677)\n", + "(003531)\n", + "(003533)\n", + "(003455)\n", + "选择题\n", + "(004092)\n", + "(003891)\n", + "(001643)\n", + "解答题\n", + "(000182)\n", + "(000187)\n", + "(000298)\n", + "(003495)\n", + "(004180)\n", + "(003500)\n", + "(003462)\n", "\n", "\n", "\n", - "赋能07.tex\n", - "0.95}{赋能07答题纸.png\n", - "(000386)\n", - "(000387)\n", - "(000388)\n", - "(000389)\n", - "(000390)\n", - "(000391)\n", - "(000392)\n", - "(000393)\n", - "(000394)\n", - "(000395)\n", + "周末卷06.tex\n", + "填空题\n", + "(010497)\n", + "(010501)\n", + "(001726)\n", + "(030279)\n", + "(030280)\n", + "(030278)\n", + "(001631)\n", + "(001668)\n", + "(001724)\n", + "选择题\n", + "(001676)\n", + "(010487)\n", + "(009998)\n", + "(010491)\n", + "解答题\n", + "(010470)\n", + "(010533)\n", + "(010508)\n", + "(010000)\n", "\n", "\n", "\n", - "赋能08.tex\n", - "0.95}{赋能08答题纸.png\n", - "(000396)\n", - "(000397)\n", - "(000398)\n", - "(000399)\n", - "(011012)\n", - "(000401)\n", - "(000402)\n", - "(000403)\n", - "(000404)\n", - "(000405)\n", + "周末卷07.tex\n", + "填空题\n", + "(004446)\n", + "(004447)\n", + "(004448)\n", + "(004449)\n", + "(004450)\n", + "(004451)\n", + "(004453)\n", + "(004454)\n", + "(004455)\n", + "(004456)\n", + "(004457)\n", + "选择题\n", + "(004458)\n", + "解答题\n", + "(004462)\n", + "(004463)\n", + "(004464)\n", "\n", "\n", "\n", - "赋能09.tex\n", - "0.95}{赋能09答题纸.png\n", - "(000406)\n", - "(000407)\n", - "(000408)\n", - "(011585)\n", - "(000410)\n", - "(000411)\n", - "(000412)\n", - "(000413)\n", - "(000414)\n", - "(000415)\n", + "周末卷08.tex\n", + "填空题\n", + "(011133)\n", + "(011134)\n", + "(011135)\n", + "(011136)\n", + "(011137)\n", + "(011138)\n", + "(011139)\n", + "(011140)\n", + "(011141)\n", + "(011142)\n", + "(011143)\n", + "(011144)\n", + "选择题\n", + "(011145)\n", + "(011146)\n", + "(011147)\n", + "(011148)\n", + "解答题\n", + "(011149)\n", + "(011150)\n", + "(011151)\n", + "(011152)\n", + "(011153)\n", + "\n", + "\n", + "\n", + "周末卷09.tex\n", + "填空题\n", + "(011049)\n", + "(011051)\n", + "(011052)\n", + "(011053)\n", + "(011054)\n", + "(011056)\n", + "(011057)\n", + "(011059)\n", + "(011060)\n", + "选择题\n", + "(011062)\n", + "(011063)\n", + "(011064)\n", + "解答题\n", + "(011065)\n", + "(011066)\n", + "(011067)\n", + "\n", + "\n", + "\n", + "周末卷10.tex\n", + "填空题\n", + "(011070)\n", + "(011072)\n", + "(011073)\n", + "(011074)\n", + "(011075)\n", + "(011076)\n", + "(011078)\n", + "(011079)\n", + "(011081)\n", + "选择题\n", + "(011082)\n", + "(011083)\n", + "(011084)\n", + "解答题\n", + "(011086)\n", + "(011087)\n", + "(011088)\n", + "(011090)\n", + "\n", + "\n", + "\n", + "周末卷11备选.tex\n", + "enumerate\n", + "(011091)\n", + "(011092)\n", + "(011094)\n", + "(011095)\n", + "(011096)\n", + "(011097)\n", + "(011098)\n", + "(011099)\n", + "(011100)\n", + "(011102)\n", + "(011103)\n", + "(011104)\n", + "(011105)\n", + "(011106)\n", + "(011107)\n", + "(011108)\n", + "(011109)\n", + "(011110)\n", + "\n", + "\n", + "\n", + "国庆卷.tex\n", + "课前练习\n", + "(030033)\n", + "(030030)\n", + "(030032)\n", + "(030031)\n", + "(030029)\n", + "(030034)\n", + "(030076)\n", + "(030036)\n", + "(030037)\n", + "(030039)\n", + "(030044)\n", + "(030038)\n", + "(030040)\n", + "(030041)\n", + "(030045)\n", + "(030042)\n", + "(030048)\n", + "(030046)\n", + "(030047)\n", + "(030051)\n", + "(030043)\n", + "(030052)\n", + "(030050)\n", + "(030049)\n", + "(030053)\n", + "(030054)\n", + "(030055)\n", + "(030059)\n", + "(030058)\n", + "(030056)\n", + "(030057)\n", + "(030060)\n", + "(030061)\n", + "(030063)\n", + "(030062)\n", + "(030065)\n", + "(030067)\n", + "(030066)\n", + "(030064)\n", + "(030068)\n", "\n", "\n", "\n" @@ -150,7 +348,7 @@ "source": [ "import os,re\n", "\"---此处输入文件夹名---\"\n", - "directory = r\"C:\\Users\\wang weiye\\Documents\\wwy sync\\23届\\赋能\"\n", + "directory = r\"C:\\Users\\weiye\\Documents\\wwy sync\\23届\\上学期周末卷\"\n", "\"---文件夹名输入结束---\"\n", "\n", "filelist = [filename for filename in os.listdir(directory) if \".tex\" in filename]\n", @@ -199,7 +397,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, @@ -213,12 +411,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" + "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, diff --git a/工具/讲义生成.ipynb b/工具/讲义生成.ipynb index 3413c910..c36c131c 100644 --- a/工具/讲义生成.ipynb +++ b/工具/讲义生成.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -15,9 +15,9 @@ "题块 2 处理完毕.\n", "正在处理题块 3 .\n", "题块 3 处理完毕.\n", - "开始编译教师版本pdf文件: 临时文件/测验08_教师_20221121.tex\n", + "开始编译教师版本pdf文件: 临时文件/测验09_教师_20221121.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/测验08_学生_20221121.tex\n", + "开始编译学生版本pdf文件: 临时文件/测验09_学生_20221121.tex\n", "0\n" ] } @@ -41,7 +41,7 @@ "# enumi_mode = 0\n", "\n", "#2023届测验卷与周末卷\n", - "exec_list = [(\"标题替换\",\"测验08\")]\n", + "exec_list = [(\"标题替换\",\"测验09\")]\n", "enumi_mode = 1\n", "\n", "# 日常选题讲义\n", @@ -51,15 +51,15 @@ "\"\"\"---其他预处理替换命令结束---\"\"\"\n", "\n", "\"\"\"---设置目标文件名---\"\"\"\n", - "destination_file = \"临时文件/测验08\"\n", + "destination_file = \"临时文件/测验09\"\n", "\"\"\"---设置目标文件名结束---\"\"\"\n", "\n", "\n", "\"\"\"---设置题号数据---\"\"\"\n", "problems = [\n", - "\"12054:12065\",\n", - "\"12066:12069\",\n", - "\"12070:12074\"\n", + "\"12075:12086\",\n", + "\"12087:12090\",\n", + "\"12091:12095\"\n", "\n", "]\n", "\"\"\"---设置题号数据结束---\"\"\"\n", @@ -211,7 +211,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.7 ('base')", + "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, @@ -225,12 +225,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.8.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba" + "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, diff --git a/工具/题号选题pdf生成.ipynb b/工具/题号选题pdf生成.ipynb index 6161170a..0721b1ac 100644 --- a/工具/题号选题pdf生成.ipynb +++ b/工具/题号选题pdf生成.ipynb @@ -2,16 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "开始编译教师版本pdf文件: 临时文件/赋能06_教师用_20221121.tex\n", + "开始编译教师版本pdf文件: 临时文件/周末卷10_教师用_20221121.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/赋能06_学生用_20221121.tex\n", + "开始编译学生版本pdf文件: 临时文件/周末卷10_学生用_20221121.tex\n", "0\n" ] } @@ -26,8 +26,7 @@ "\"\"\"---设置题目列表---\"\"\"\n", "#留空为编译全题库, a为读取临时文件中的题号筛选.txt文件生成题库\n", "problems = r\"\"\"\n", - "001772,000377,000378,008356,008334,008080,000382,000383,000384,000385\n", - "\n", + "11091:11111\n", "\n", "\n", "\"\"\"\n", @@ -35,7 +34,7 @@ "\n", "\"\"\"---设置文件名---\"\"\"\n", "#目录和文件的分隔务必用/\n", - "filename = \"临时文件/赋能06\"\n", + "filename = \"临时文件/周末卷10\"\n", "\"\"\"---设置文件名结束---\"\"\"\n", "\n", "\n", diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 5595bb7a..2919f562 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -270594,7 +270594,7 @@ }, "011072": { "id": "011072", - "content": "设$a\\in \\mathbf{R}$, $a^2-a-2+(a+1)\\mathrm{i}$为纯虚数($i$为虚数单位), 则$a=$\\blank{50}.", + "content": "设$a\\in \\mathbf{R}$, $a^2-a-2+(a+1)\\mathrm{i}$为纯虚数($\\mathrm{i}$为虚数单位), 则$a=$\\blank{50}.", "objs": [], "tags": [ "第五单元" @@ -270682,7 +270682,7 @@ }, "011076": { "id": "011076", - "content": "已知数列$\\{a_n\\}$的通项公式为$a_n=\\begin{cases} n, & n\\le 2, \\\\ (\\dfrac 12)^{n-1}, & n\\ge 3 \\end{cases}$($n\\in \\mathbf{N}^*$). $S_n$是数列$\\{a_n\\}$的前$n$项和. 则$\\displaystyle\\lim_{n\\to \\infty}S_n=$\\blank{50}.", + "content": "已知数列$\\{a_n\\}$的通项公式为$a_n=\\begin{cases} n, & n\\le 2, \\\\ (\\dfrac 12)^{n-1}, & n\\ge 3 \\end{cases}$($n\\in \\mathbf{N}$, $n\\ge 1$). $S_n$是数列$\\{a_n\\}$的前$n$项和. 则$\\displaystyle\\lim_{n\\to \\infty}S_n=$\\blank{50}.", "objs": [], "tags": [ "第四单元" @@ -270977,7 +270977,7 @@ }, "011090": { "id": "011090", - "content": "已知无穷数列$\\{a_n\\}$的前$n$项和为$S_n$, 若对于任意的正整数$n$, 均有$S_{2n-1}\\ge 0$, $S_{2n}\\le 0$, 则称数列$\\{a_n\\}$具有性质$P$.\\\\\n(1) 判断首项为$1$, 公比为$-2$的无穷等比数列$\\{a_n\\}$是否具有性质$P$, 并说明理由;\\\\\n(2) 已知无穷数列$\\{a_n\\}$具有性质$P$, 且任意相邻四项之和都相等, 求证: $S_4=0$;\\\\\n(3) 已知$b_n=2n-1$($n\\in \\mathbf{N}^*$), 数列$\\{c_n\\}$是等差数列, $a_n=\\begin{cases} b_{\\frac{n+1}2}, & n\\text{为奇数}, \\\\c_{\\frac n2}, & n\\text{为偶数}. \\end{cases}$ 若无穷数列$\\{a_n\\}$具有性质$P$, 求$c_{2021}$的取值范围.", + "content": "已知无穷数列$\\{a_n\\}$的前$n$项和为$S_n$, 若对于任意的正整数$n$, 均有$S_{2n-1}\\ge 0$, $S_{2n}\\le 0$, 则称数列$\\{a_n\\}$具有性质$P$.\\\\\n(1) 判断首项为$1$, 公比为$-2$的无穷等比数列$\\{a_n\\}$是否具有性质$P$, 并说明理由;\\\\\n(2) 已知无穷数列$\\{a_n\\}$具有性质$P$, 且任意相邻四项之和都相等, 求证: $S_4=0$;\\\\\n(3) 已知$b_n=2n-1$($n\\in \\mathbf{N}$, $n\\ge 1$), 数列$\\{c_n\\}$是等差数列, $a_n=\\begin{cases} b_{\\frac{n+1}2}, & n\\text{为奇数}, \\\\c_{\\frac n2}, & n\\text{为偶数}. \\end{cases}$ 若无穷数列$\\{a_n\\}$具有性质$P$, 求$c_{2021}$的取值范围.", "objs": [], "tags": [ "第四单元" @@ -292899,6 +292899,405 @@ "remark": "", "space": "12ex" }, + "012075": { + "id": "012075", + "content": "设集合$A=\\{x|(x-1)(x-4)<0\\}$, 集合$B=\\mathbf{Z}$, 则$A\\cap B=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题1", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012076": { + "id": "012076", + "content": "已知$\\mathrm{i}$为虚数单位, 则复数$z=\\dfrac{3+\\mathrm{i}}{2+\\mathrm{i}}$的模$|z|=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题2", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012077": { + "id": "012077", + "content": "方程$\\log_2(3x+4)=3$的解为$x=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题3", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012078": { + "id": "012078", + "content": "在二项式$(x+\\dfrac2x)^6$的展开式中, 常数项是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题4", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012079": { + "id": "012079", + "content": "若圆锥侧面积为$20\\pi$, 且母线与底面所成角为$\\arccos \\dfrac 4\n5$, 则该圆锥的侧面积为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题5", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012080": { + "id": "012080", + "content": "设点$H(2,3)$, 若直线$l$经过点$H$, 且与直线$OH$垂直($O$为坐标原点), 则直线$l$的方程为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题6", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012081": { + "id": "012081", + "content": "函数$y=2\\cos\\left(x+\\dfrac{\\pi}{4}\\right)\\cos\\left(x-\\dfrac{\\pi}{4}\\right)+\\sqrt{3}\\sin 2x$的值域为\\blank{80}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题7", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012082": { + "id": "012082", + "content": "函数$y=\\dfrac{x}{x+1}$的图像是一个中心对称图形, 其对称中心的坐标为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题8", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012083": { + "id": "012083", + "content": "已知随机变量$X$的分布列为$\\begin{pmatrix}\n -1 & 0 & 1 \\\\\n \\dfrac 12 & \\dfrac 13 & \\dfrac 16 \n \\end{pmatrix}$, 另一个随机变量$Y$满足$X+2Y=4$, 则$Y$的方差$D[Y]=$\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题9", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012084": { + "id": "012084", + "content": "在由数字$1, 2, 3, 4, 5$组成的数字不重复的五位数中, 小于$50000$的奇数有\\blank{50}个.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题10", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012085": { + "id": "012085", + "content": "平面上的三个单位向量$\\overrightarrow{a}$, $\\overrightarrow{b}$, $\\overrightarrow{c}$满足$2\\overrightarrow{c}=3\\overrightarrow{a}+4\\overrightarrow{b}$, 则$\\overrightarrow{a}$, $\\overrightarrow{b}$, $\\overrightarrow{c}$两两间的夹角中, 最小的角的大小为\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题11", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012086": { + "id": "012086", + "content": "设区间$(m,n)$($mb$''是``$a^3+1>b^3+1$的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分又非必要条件}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题13", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012088": { + "id": "012088", + "content": "演讲比赛共有$9$位评委分别给出某选手的原始评分, 评定该选手的成绩时, 从$9$个原始评分中去掉$1$个最高分、$1$个最低分, 得到$7$个有效评分. $7$个有效评分与$9$个原始评分相比, 不变的数字特征是\\bracket{20}.\n\\fourch{中位数}{平均数}{方差}{极差}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题14", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012089": { + "id": "012089", + "content": "已知$\\omega$是常数, 若函数$y=|\\sin (\\omega x+\\dfrac \\pi 3)|$图像的一条对称轴是直线$x=\\dfrac\\pi 6$. 则$\\omega$的值不可能在区间\\bracket{20}中.\n\\fourch{$(0,2)$}{$(2,4)$}{$(4,6)$}{$(6,8)$}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题15", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012090": { + "id": "012090", + "content": "对于两个定义在$\\mathbf{R}$上的函数$y=f(x)$与$y=g(x)$, 构造新的函数$y=h(x)$如下: 对任意$x_0\\in \\mathbf{R}$, $h(x_0)=f(x_0)+g(x_0)$. 现已知$y=h(x)$是严格增函数, 对于以下两个命题: \n\\textcircled{1} $y=f(x)$与$y=g(x)$中至少有一个是严格增函数;\n\\textcircled{2} $y=f(x)$与$y=g(x)$中至少有一个无最大值.\n其中\\bracket{20}.\n\\fourch{\\textcircled{1}和\\textcircled{2}都是真命题}{只有\\textcircled{1}是真命题}{只有\\textcircled{2}是真命题}{没有真命题}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题16", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012091": { + "id": "012091", + "content": "如图, 设$P-ABCD$是底面为矩形的四棱锥, $PA\\perp$平面$ABCD$. $PA=AB=2$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (0,0,2) node [left] {$B$} coordinate (B);\n\\draw (3,0,2) node [right] {$C$} coordinate (C);\n\\draw (3,0,0) node [right] {$D$} coordinate (D);\n\\draw (0,2,0) node [left] {$P$} coordinate (P);\n\\draw (P) -- (B) -- (C) -- (D) -- (P) (P) -- (C);\n\\draw [dashed] (A) -- (P) (A) -- (B) (A) -- (D);\n\\end{tikzpicture}\n\\end{center}\n(1) 若$PC\\perp BD$, 求四棱锥$P-ABCD$的体积;\\\\\n(2) 若直线$PD$与平面$PAB$所成的角的大小为$\\arctan 2$, 求直线$PC$与平面$ABCD$所成的角的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题17", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012092": { + "id": "012092", + "content": "设$a$是实常数, 并记$f(x)=x^3+ax^2+2x$.\\\\\n(1) 当$a=-\\dfrac{5}{2}$时, 求函数$y=(x)$的单调减区间;\\\\ \n(2) 是否存在$a$, 使得函数$y=f(x)$有且三个零点, 且三个零点可按某种顺序排列后成等差数列? 若存在, 求所有满足条件的$a$的值; 若不存在, 说明理由.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题18", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012093": { + "id": "012093", + "content": "如图, 某市郊外景区内一条笔直的公路$a$经过三个景点$A$、$B$、$C$. 景区管委会又开发了风景优美的景点$D$.经测量景点$D$位于景点$A$的北偏东$30^\\circ$方向$8$千米处, 且位于景点$B$的正北方向, 还位于景点$C$的北偏西$75^\\circ$方向上.已知$AB=5$千米.\n\\begin{center}\n \\begin{tikzpicture}[>=latex,scale = 0.25]\n \\draw [->] (6,8) -- (10,8) node [right] {东};\n \\draw [->] (6,8) -- (6,12) node [above] {北};\n \\draw [->] (0,0) node [below] {$A$} coordinate (A) -- (0,8) node [left] {$N$} coordinate (N);\n \\draw (A) --++ (60:8) node [above] {$D$} coordinate (D);\n \\draw (4,3) node [below] {$B$} coordinate (B) -- (D);\n \\draw [name path = linea] (A) -- ($(A)!2.2!(B)$) node [right] {$a$} coordinate (a);\n \\path [name path = DC] (D) --++ (-15:4);\n \\path [name intersections = {of = linea and DC, by = C}];\n \\draw (D) -- (C) node [below] {$C$};\n \\draw (60:2) arc (60:90:2);\n \\draw (75:4) node {$30^\\circ$};\n \\end{tikzpicture}\n\\end{center}\n(1) 景区管委会准备由景点$D$向景点$B$修一条笔直的公路, 不考虑其他因素, 求出这条公路的长(结果精确到$0.1$千米);\\\\\n(2) 求景点$C$与景点$D$之间的距离(结果精确到$0.1$千米).", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2023届华东师范大学一附中高三上学期期中考试试题19", + "edit": [ + "20221121\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "012094": { + "id": "012094", + "content": "已知数列$\\{a_n\\}$的通项公式为$a_n=2^n+\\lambda n$, 其中常数$\\lambda\\in \\mathbf{R}$.\\\\\n(1) 若$a_3=4a_2$, 求$\\lambda$的值;\\\\\n(2) 若$\\{a_n\\}$前$10$项的和为$1551$, 试分析$\\{a_n\\}$的单调性;\\\\\n(3) 若不小于$2$的正整数$p,q$满足$p