diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 82e39444..a79ab145 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -604122,6 +604122,106 @@ "space": "4em", "unrelated": [] }, + "022817": { + "id": "022817", + "content": "如图, 底面为矩形的直棱柱 $ABCD-A_1B_1C_1D_1$ 满足: $AA_1=4$, $AD=3$, $CD=2$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.7]\n\\def\\l{3}\n\\def\\m{2}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$B$} coordinate (B);\n\\draw (B) ++ (\\l,0,0) node [below right] {$C$} coordinate (C);\n\\draw (B) ++ (\\l,0,-\\m) node [right] {$D$} coordinate (D);\n\\draw (B) ++ (0,0,-\\m) node [left] {$A$} coordinate (A);\n\\draw (B) -- (C) -- (D);\n\\draw [dashed] (B) -- (A) -- (D);\n\\draw (B) ++ (0,\\n,0) node [left] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\n,0) node [right] {$C_1$} coordinate (C_1);\n\\draw (D) ++ (0,\\n,0) node [above right] {$D_1$} coordinate (D_1);\n\\draw (A) ++ (0,\\n,0) node [above left] {$A_1$} coordinate (A_1);\n\\draw (B_1) -- (C_1) -- (D_1) -- (A_1) -- cycle;\n\\draw (B) -- (B_1) (C) -- (C_1) (D) -- (D_1);\n\\draw [dashed] (A) -- (A_1);\n\\draw ($(B)!0.5!(B_1)$) node [left] {$M$} coordinate (M);\n\\draw ($(C)!0.6!(D)$) node [right] {$N$} coordinate (N);\n\\draw [dashed] (A_1)--(C)(M)--(A)(M)--(N)(A)--(N)(A_1)--(M)(A_1)--(N);\n\\end{tikzpicture}\n\\end{center}\n(1) 求直线 $A_1C$ 与平面 $AA_1D_1D$ 所成的角 $\\theta$ 的大小;\\\\\n(2) 设 $M$、$N$ 分别为棱 $BB_1$、$CD$ 上的动点, 求证: 三棱锥 $N-A_1AM$ 的体积 $V$ 为定值, 并求出该值.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高三上学期124分守护卷题目", + "edit": [ + "20231123\t毛培菁" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "022818": { + "id": "022818", + "content": "设函数 $f(x)=x^2+|x-a|$($x \\in \\mathbf{R}$, $a$ 为实数).\\\\\n(1) 若 $f(x)$ 为偶函数, 求实数 $a$ 的值;\\\\\n(2) 设 $a>\\dfrac{1}{2}$, 求函数 $f(x)$ 的最小值(用 $a$ 表示).", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高三上学期124分守护卷题目", + "edit": [ + "20231123\t毛培菁" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "022819": { + "id": "022819", + "content": "一家污水处理厂有 $A$、$B$ 两个相同的装满污水的处理池, 通过去掉污物处理污水. $A$ 池用传统工艺成本低, 每小时去掉池中剩余污物的 $10 \\%$, $B$ 池用创新工艺成本高, 每小时去掉池中剩余污物的 $19 \\%$.\\\\\n(1) $A$ 池要用多长时间才能把污物的量减少一半(精确到 $1$ 小时);\\\\\n(2) 如果污物减少为原来的 $10 \\%$ 便符合环保规定, 处理后的污水可以排入河流. 若 $A$、$B$ 两池同时工作, 问经过多少小时后把两池水混合便符合环保规定(精确到 $1$ 小时).", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高三上学期124分守护卷题目", + "edit": [ + "20231123\t毛培菁" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "022820": { + "id": "022820", + "content": "已知直线 $l: x=t$($0=latex]\n\\draw [->] (-2.5,0) -- (2.5,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [name path = ellipse] (0,0) ellipse (2 and {sqrt(2)});\n\\draw [name path = line] (0.8,-1.5) -- (0.8,1.5);\n\\draw [name intersections = {of = line and ellipse, by = {A,B}}];\n\\filldraw (A) circle (0.03) node [above right] {$A$};\n\\filldraw (B) circle (0.03) node [below right] {$B$};\n\\end{tikzpicture}\n\\end{center}\n(1) 记 $F_1, F_2$ 是椭圆 $\\Gamma$ 的左右焦点, 若直线 $AB$ 过 $F_2$, 当 $M$ 到 $F_1$ 的距离与到直线 $AB$ 的距离相等时, 求点 $M$ 的横坐标;\\\\\n(2) 若点 $M, A$ 关于 $y$ 轴对称, 当 $\\triangle MAB$ 的面积最大时, 求直线 $MB$ 的方程.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高三上学期124分守护卷题目", + "edit": [ + "20231123\t毛培菁" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "022821": { + "id": "022821", + "content": "已知数列 $\\{a_n\\}$ 各项均为正数, $S_n$ 为其前 $n$ 项的和, 且 $a_n, S_n, a_n^2$($n \\in \\mathbf{N}$, $n \\geq 1$) 成等差数列.\\\\\n(1) 写出 $a_1$、$a_2$、$a_3$ 的值, 并猜想数列 $\\{a_n\\}$ 的通项公式 $a_n$;\\\\\n(2) 证明 (1) 中的猜想.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届高三上学期124分守护卷题目", + "edit": [ + "20231123\t毛培菁" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, "030001": { "id": "030001", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0