Merge branch 'master' of ssh://wwylss.asuscomm.com:30001/wangweiye/mathdeptv2

This commit is contained in:
WangWeiye 2023-04-11 19:35:01 +08:00
commit bc503f841a
6 changed files with 1120 additions and 410 deletions

View File

@ -2,7 +2,7 @@ import os,re,json
"""---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---""" """---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---"""
keywords_dict_table = [ keywords_dict_table = [
{"origin":["崇明"],"origin2":["二模"]} {"origin":["2025"],"origin2":["校本"],"origin3":["高一下"]}
] ]
"""---关键字设置完毕---""" """---关键字设置完毕---"""
# 示例: keywords_dict_table = [ # 示例: keywords_dict_table = [

View File

@ -1,8 +1,8 @@
#修改起始id,出处,文件名 #修改起始id,出处,文件名
starting_id = 14805 starting_id = 14826
raworigin = "" raworigin = ""
filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目9.tex" filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目9.tex"
editor = "20230407\t王伟叶" editor = "202304010\t王伟叶"
indexed = True indexed = True
import os,re,json import os,re,json

View File

@ -11,7 +11,7 @@ answered = True
#目录和文件的分隔务必用/ #目录和文件的分隔务必用/
directory = "临时文件/" directory = "临时文件/"
# filename = "高三二模前易错题" # filename = "高三二模前易错题"
filename = "赋能" filename = "2022学年度下学期高一高二新增题目及校本作业"
"""---设置文件名结束---""" """---设置文件名结束---"""
"""---设置题目列表---""" """---设置题目列表---"""
@ -19,7 +19,7 @@ filename = "赋能"
problems_dict = { problems_dict = {
"2025届高一下学期校本作业":"21441:22047",
"2024届高二下学期周末卷01":"40001:40017", "2024届高二下学期周末卷01":"40001:40017",
"2025届高一下学期周末卷01":"40018:40036", "2025届高一下学期周末卷01":"40018:40036",
"2024届高二下学期周末卷02":"40037:40056", "2024届高二下学期周末卷02":"40037:40056",
@ -49,7 +49,9 @@ problems_dict = {
"2025届高一下学期周末卷02小测":"40387:40395", "2025届高一下学期周末卷02小测":"40387:40395",
"2025届高一下学期周末卷07":"40396:40413", "2025届高一下学期周末卷07":"40396:40413",
"2025届高一下学期周末卷07小测":"40414:40421", "2025届高一下学期周末卷07小测":"40414:40421",
"2025届高一下学期周末卷08":"40527:40551" "2025届高一下学期周末卷08":"40527:40551",
"2024届高二下学期周末卷08":"40570:40587",
"2024届高二下学期周末卷09":"40588:40604"
} }

View File

@ -1,418 +1,69 @@
ans ans
021441 14826
错误, 正确, 错误, 错误
021442
D
021443
C
021444
A
021445
C
021446
D
021447
$-390^\circ$
021448
$304^\circ$, $-56^\circ$
021449
$-144^\circ$
021450
二, 四
021451
(1) $\{\alpha|\alpha=60^\circ+k\cdot 360^\circ, \ k\in \mathbf{Z}\}$, $-300^\circ$, $60^\circ$, $420^\circ$; (2) $\{\alpha|\alpha = -21^\circ+k\cdot 360^\circ, \ k \in \mathbf{Z}\}$, $-21^\circ$, $339^\circ$, $699^\circ$
021452
\begin{tikzpicture}[>=latex]
\fill [pattern = north east lines] (30:2) arc (30:60:2) -- (0,0) -- cycle;
\draw (30:2) -- (0,0) -- (60:2);
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\end{tikzpicture}
021453
$-1290^{\circ}$;第二象限
021454
(1) $ \{\alpha|\alpha=45^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\alpha=135^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
(3) $\{\alpha|\alpha=45^{\circ}+k\cdot 90^{\circ}, \ k \in \mathbf{Z}\}$;\\
(4) $\{\alpha|180^{\circ}+k\cdot 360^{\circ}<\alpha<270^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
021455
(1) $ \{\beta|\beta=\alpha+180^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(2) $\{\beta|\beta=\alpha+90^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
(3) $\{\beta|\beta=-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(4) $\{\beta|\beta=90^{\circ}-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
021456
C
021457
B
021458
$\dfrac{\pi}{12}$; $\dfrac{7\pi}{12}$; $\dfrac{5\pi}{4}$; $300^{\circ}$; $324^{\circ}$; $315^{\circ}$; $(\dfrac{270}{\pi})^{\circ}$
021459
(1)$\frac{50\pi+180}{9}$;(2)$\frac{250\pi}{9}$
021460
$\sqrt{3}$
021461
(1)$\frac{\pi}{3}$;(2)$\frac{2\pi}{3}$
021462
(1)$16\pi+\frac{2\pi}{3}$,二;\\
(2)$-18\pi+\frac{4\pi}{3}$,三;\\
(3)$-2\pi+\frac{7\pi}{5}$,三;\\
(4)$-2\pi+\frac{3\pi}{4}$,二.
021463
$\frac{1}{2}$
021464
(1) $\{\alpha|-\frac{\pi}{2}+2k\pi<\alpha<2k\pi,\ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\alpha=\frac{k\pi}{2},\ k \in \mathbf{Z}\}$.
021465
(1) $\beta=\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
(2) $\beta=-\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
(3) $\beta=-\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$;\\
(4) $\beta=\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$.
021466
(1) $\{\alpha|-\frac{\pi}{4}+2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\frac{\pi}{6}+k\pi \le \alpha \le \frac{5\pi}{6}+k\pi,\ k \in \mathbf{Z}\}$.
021467
(1) 第四象限;第四象限;\\
(2) 第二象限或者第四象限;第一象限或第二象限或者$y$轴正半轴.
021468
$A\cap B=\{\alpha | 2k \pi+\dfrac{5\pi}{6}<\alpha<2k \pi+\dfrac{7\pi}{6},\ k \in \mathbf{Z} \}$
021469
\begin{tabular}{|c|c|c|c|c|c|}
\hline &$P(-5,12)$&$P(0,-6)$&$P(6,0)$&$P(-9,-12)$&$P(1,-\sqrt{3})$\\
\hline$\sin \alpha$&$\dfrac{12}{13}$ &$-1$ & $0$&$-\dfrac{4}{5}$ &$-\dfrac{\sqrt{3}}2$ \\
\hline$\cos \alpha$&$-\dfrac{5}{13}$ &$0$ & $1$&$-\dfrac{3}{5}$ &$\dfrac 12$ \\
\hline$\tan \alpha$&$-\dfrac{12}{5}$ &不存在 & $0$&$\dfrac{4}{3}$ &$-\sqrt{3}$ \\
\hline$\cot \alpha$&$-\dfrac{5}{12}$ &$0$ & 不存在 &$\dfrac {3}{4}$ &$-\dfrac{\sqrt{3}}3$ \\
\hline
\end{tabular}
040018
(1) $\dfrac{\pi}{4}$; (2) $\dfrac{\pi}{6}$; (3) $\dfrac{\pi}{10}$; (4) $\dfrac{\pi}{3}$; (5) $\dfrac{5\pi}{12}$; (6) $\dfrac{\pi}{15}$
040019
(1) $60^{\circ}$; (2) $36^{\circ}$; (3) $45^{\circ}$; (4) $75^{\circ}$; (5) $40^{\circ}$; (6) $54^{\circ}$
040020
(1) $2k\pi+\dfrac{\pi}{2}$; (2) $2k\pi+\dfrac{3\pi}{2}$; (3) $2k\pi+\dfrac{7\pi}{6}$; (4) $k\pi+\dfrac{\pi}{4}$; (5) $\dfrac{k\pi}{2}+\dfrac{\pi}{6}$
040021
(1) $k \times 360^{\circ}+60^{\circ}$;\\
(2) $k \times 360^{\circ}+330^{\circ}$; \\
(3) $k \times 360^{\circ}-210^{\circ}$; \\
(4) $k \times 180^{\circ}-45^{\circ}$; \\
(5) $k \times 90^{\circ}+50^{\circ}$
040022
(1) $330^{\circ}$; (2) $240^{\circ}$; (3) $210^{\circ}$; (4) $300^{\circ}$
040023
(1) $\dfrac{4\pi}{3}$; (2) $\dfrac{11\pi}{6}$; (3) $10-2\pi$; (4) $-10+4\pi$
040024
$18$
040025
$3$,$-2$
040026
(1) $1037$; (2) $-4k+53$; (3) $500$
040027
$-2n+10$
040028
15
040029
$7$
040030
$(4,\dfrac{14}{3}]$
040031
$2n-1$
040032
$(3,\dfrac{35}{9})$或$(\dfrac{35}{9},3)$
040033
$200$
040034
040035
$a_n=\begin{cases}1, & n=1,\\ 2n, & n=2k, \\ 2n-2, & n=2k+1\end{cases}$($k\in \mathbf{N}$, $k\ge 1$)
040036
$6n-3$
040057
$\dfrac{19}{28}\sqrt{7}$
040058
$\dfrac{79}{156}$
040059
$2$
040060
$-\dfrac{\sqrt{1-m^2}}{m}$
040061
$-\dfrac{1}{5}, \dfrac{1}{5}$
040062
$-\dfrac{1}{3}, 3$
040063
$\dfrac{1}{2}, -2$
040064
$\dfrac{\sqrt{6}}{3}$
040065
$\dfrac{1}{3}, -\dfrac{9}{4}$
040066
$\dfrac{1}{3}, \dfrac{7}{9}$
040067
$\pm\dfrac{\sqrt{2}}{3}$
040068
$\dfrac{1}{4}, \dfrac{2}{5}$
040069
$\dfrac{1-\sqrt{17}}{4}$
040070
(1) 三; (2) 三
040071
(1) $[-\dfrac{1}{2},\dfrac{1}{2})\cup\{1\}$; (2) $[-\dfrac{\pi}{3},\dfrac{\pi}{3})$; (3) $\{-\dfrac{1}{2}\}$
040072
(1) $-\tan \alpha-\cot \alpha$; (2) $-\dfrac{\sqrt{2}}{\sin \alpha}$; (3) $-1$; (4) $0$
040073
040074
$-\dfrac{10}{9}$
040075
$a_n=\dfrac{1}{3n-2}$
040076
$a_n=\dfrac{1}{n}$
040077
$(n-\dfrac{4}{5})5^n$
040078
$2^{n+1}-3$
040079
$1078$
040080
$S_n=\begin{cases}\dfrac{n^2}{2}+n-\dfrac 23+\dfrac 23\cdot 2^n, & n\text{为偶数},\\ \dfrac{n^2}{2}-\dfrac 76+\dfrac 23\cdot 2^{n+1}, & n\text{为奇数} \end{cases}$
040081
(1) 略; (2) $n^2$
040082
(1) 不存在; (2) 存在, 如$c_n=2^{n-1}$
040083
$\dfrac{\sqrt{3}}{2}$
040084
$0$
040085
$\{0,-2\pi\}$
040086
$-\dfrac{\pi}6,\dfrac 56\pi$
040087
$\cot \alpha$
040088
$7+4\sqrt{3}$
040089
$\dfrac{\sqrt{2}-\sqrt{6}}{4}$
040090
$\dfrac{\sqrt{3}+\sqrt{35}}{12}$
040091
$\dfrac 12$
040092
$5$ $5$
14827
$\dfrac 43$
040093 14828
$-\dfrac 12$ $\{1\}$
14829
$\pi$
040094 14830
$\dfrac{\pi}{12}$ $\dfrac 14$
14831
$1$
040095 14832
$\{x|x=\pm\frac 23 \pi+2k\pi,k \in \mathbf{Z}\}$ $3$
14833
$\dfrac 52$
040096 14834
$\dfrac 43 \pi$ $2\pi$
14835
$0.9$
040097 14836
$\textcircled{4}$ $2\sqrt{2}$
14837
$(0,4)$
040098 14838
B
14839
B
14840
C C
14841
D
040099 14842
$\dfrac{-2\sqrt{2}-\sqrt{3}}6$ (1) 相交; (2) $5\sqrt{5}+8$
14843
(1) $f(x)=\dfrac{\sqrt{2}}2\sin (2x+\dfrac\pi 4)+\dfrac 12$, 最大值为$\dfrac{1+\sqrt{2}}2$, 当且仅当$x=\dfrac\pi 8+k\pi$, $k\in \mathbf{Z}$时取得; (2) $A=\dfrac\pi 4$, $B=\dfrac\pi 3$, $AC=\sqrt{6}$
040100 14844
$-\dfrac 7{25}$ (1) 中位数$M=42.5$, 列联表如下: \begin{tabular}{|c|c|c|}
\hline & 超过$M$& 不超过$M$\\
\hline 上班时间 & 10 & 10 \\
040101 \hline 下班时间 & 11 & 9\\
$-\dfrac {\pi}3$ \hline
\end{tabular}; (2) $\chi^2=0.1$, 无显著差异
040102
$(-\dfrac {12}{13}, \dfrac{5}{13})$
040103
$(\dfrac {5-12\sqrt{3}}{2}, \dfrac{12-5\sqrt{3}}{2})$
040104
14845
(1) $P(4a^{\frac 13},4a^{\frac 23})$; (2) $1$; (3) $2\sqrt{2}$或$\dfrac{\sqrt{2}}4$
14846
(1) 证明略 (2) $(\pi,\pi+3\sqrt{3}]$; (3) 证明略, 反之不一定成立, 如取$a_n$是常数$a$, 满足$a+2\sin a=\pi$(这样的$a$有三个)

View File

@ -1,8 +1 @@
014805,014806,014807,014808,014809,014810,014811,014812,014813,014814,014815,014816,014817,014818,014819,014820,014821,014822,014823,014824,014825,030608,030632,030636,030679,030715,030757,030836,030856,030895,030927,030955,030977,031022,031040,031115,031136,031149 021441,021442,021443,021444,021445,021446,021447,021448,021449,021450,021451,021452,021453,021454,021455,021456,021457,021458,021459,021460,021461,021462,021463,021464,021465,021466,021467,021468,021469,021470,021471,021472,021473,021474,021475,021476,021477,021478,021479,021480,021481,021482,021483,021484,021485,021486,021487,021488,021489,021490,021491,021492,021493,021494,021495,021496,021497,021498,021499,021500,021501,021502,021503,021504,021505,021506,021507,021508,021509,021510,021511,021512,021513,021514,021515,021516,021517,021518,021519,021520,021521,021522,021523,021524,021525,021526,021527,021528,021529,021530,021531,021532,021533,021534,021535,021536,021537,021538,021539,021540,021541,021542,021543,021544,021545,021546,021547,021548,021549,021550,021551,021552,021553,021554,021555,021556,021557,021558,021559,021560,021561,021562,021563,021564,021565,021566,021567,021568,021569,021570,021571,021572,021573,021574,021575,021576,021577,021578,021579,021580,021581,021582,021583,021584,021585,021586,021587,021588,021589,021590,021591,021592,021593,021594,021595,021596,021597,021598,021599,021600,021601,021602,021603,021604,021605,021606,021607,021608,021609,021610,021611,021612,021613,021614,021615,021616,021617,021618,021619,021620,021621,021622,021623,021624,021625,021626,021627,021628,021629,021630,021631,021632,021633,021634,021635,021636,021637,021638,021639,021640,021641,021642,021643,021644,021645,021646,021647,021648,021649,021650,021651,021652,021653,021654,021655,021656,021657,021658,021659,021660,021661,021662,021663,021664,021665,021666,021667,021668,021669,021670,021671,021672,021673,021674,021675,021676,021677,021678,021679,021680,021681,021682,021683,021684,021685,021686,021687,021688,021689,021690,021691,021692,021693,021694,021695,021696,021697,021698,021699,021700,021701,021702,021703,021704,021705,021706,021707,021708,021709,021710,021711,021712,021713,021714,021715,021716,021717,021718,021719,021720,021721,021722,021723,021724,021725,021726,021727,021728,021729,021730,021731,021732,021733,021734,021735,021736,021737,021738,021739,021740,021741,021742,021743,021744,021745,021746,021747,021748,021749,021750,021751,021752,021753,021754,021755,021756,021757,021758,021759,021760,021761,021762,021763,021764,021765,021766,021767,021768,021769,021770,021771,021772,021773,021774,021775,021776,021777,021778,021779,021780,021781,021782,021783,021784,021785,021786,021787,021788,021789,021790,021791,021792,021793,021794,021795,021796,021797,021798,021799,021800,021801,021802,021803,021804,021805,021806,021807,021808,021809,021810,021811,021812,021813,021814,021815,021816,021817,021818,021819,021820,021821,021822,021823,021824,021825,021826,021827,021828,021829,021830,021831,021832,021833,021834,021835,021836,021837,021838,021839,021840,021841,021842,021843,021844,021845,021846,021847,021848,021849,021850,021851,021852,021853,021854,021855,021856,021857,021858,021859,021860,021861,021862,021863,021864,021865,021866,021867,021868,021869,021870,021871,021872,021873,021874,021875,021876,021877,021878,021879,021880,021881,021882,021883,021884,021885,021886,021887,021888,021889,021890,021891,021892,021893,021894,021895,021896,021897,021898,021899,021900,021901,021902,021903,021904,021905,021906,021907,021908,021909,021910,021911,021912,021913,021914,021915,021916,021917,021918,021919,021920,021921,021922,021923,021924,021925,021926,021927,021928,021929,021930,021931,021932,021933,021934,021935,021936,021937,021938,021939,021940,021941,021942,021943,021944,021945,021946,021947,021948,021949,021950,021951,021952,021953,021954,021955,021956,021957,021958,021959,021960,021961,021962,021963,021964,021965,021966,021967,021968,021969,021970,021971,021972,021973,021974,021975,021976,021977,021978,021979,021980,021981,021982,021983,021984,021985,021986,021987,021988,021989,021990,021991,021992,021993,021994,021995,021996,021997,021998,021999,022000,022001,022002,022003,022004,022005,022006,022007,022008,022009,022010,022011,022012,022013,022014,022015,022016,022017,022018,022019,022020,022021,022022,022023,022024,022025,022026,022027,022028,022029,022030,022031,022032,022033,022034,022035,022036,022037,022038,022039,022040,022041,022042,022043,022044,022045,022046,022047
未使用题号:
030608,030632,030636,030679,030715,030757,030836,030856,030895,030927,030955,030977,031022,031040,031115,031136,031149
已使用题号:
014805,014806,014807,014808,014809,014810,014811,014812,014813,014814,014815,014816,014817,014818,014819,014820,014821,014822,014823,014824,014825

File diff suppressed because it is too large Load Diff