修改23499题面
This commit is contained in:
parent
3bbcefd79c
commit
c0f109df39
|
|
@ -640147,7 +640147,7 @@
|
|||
},
|
||||
"023499": {
|
||||
"id": "023499",
|
||||
"content": "在等差数列 $\\{a_n\\}$ 中, 公差 $d \\neq 0$, $a_kx^2+2 a_{k+1}x+a_{k+2}=0$ ($k$ 为正整数).\\\\\n(1) 求证: 对不同的 $k$ 值, 方程都有公共根.\\\\\n(2) 若方程除公共根外的根依次为 $b_1, b_2, b_3, \\cdots, b_k, \\cdots$, 求证: 数列 $\\{\\dfrac{1}{b_k+1}\\}$ 是等差数列.\\\\\n(3) 设$\\{b_n\\}$是(2)中定义的数列. 若 $b_1=2$, 求 $b_{10}$.",
|
||||
"content": "在各项均不为零的等差数列 $\\{a_n\\}$ 中, 公差 $d \\neq 0$. 考察如下的一组方程: $a_kx^2+2 a_{k+1}x+a_{k+2}=0$ ($k$ 为正整数).\\\\\n(1) 求证: 对不同的 $k$ 值, 方程都有公共根.\\\\\n(2) 若方程除公共根外的根依次为 $b_1, b_2, b_3, \\cdots, b_k, \\cdots$, 求证: 数列 $\\{\\dfrac{1}{b_k+1}\\}$ 是等差数列.\\\\\n(3) 设$\\{b_n\\}$是(2)中定义的数列. 若 $b_1=2$, 求 $b_{10}$.",
|
||||
"objs": [],
|
||||
"tags": [
|
||||
"第四单元",
|
||||
|
|
@ -640161,6 +640161,7 @@
|
|||
"origin": "26届寒假作业补充题目",
|
||||
"edit": [
|
||||
"20240108\t王伟叶",
|
||||
"20240129\t王伟叶",
|
||||
"20240129\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
|
|
|
|||
Reference in New Issue