录入2024届高三上学期测验4-2部分题目
This commit is contained in:
parent
618f204d06
commit
c1485c0ae2
|
|
@ -607711,6 +607711,286 @@
|
|||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022891": {
|
||||
"id": "022891",
|
||||
"content": "已知集合 $M=\\{x | x>2\\}$, 集合 $N=\\{x | x \\leq 1\\}$, 则 $M \\cup N=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022892": {
|
||||
"id": "022892",
|
||||
"content": "若 $z(1+i)=2 \\mathrm{i}$ ($\\mathrm{i}$ 是虚数单位), 则 $|z|=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022893": {
|
||||
"id": "022893",
|
||||
"content": "向量 $\\overrightarrow{a}=(3,4)$ 在向量 $\\overrightarrow{b}=(1,0)$ 方向上的数量投影为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022894": {
|
||||
"id": "022894",
|
||||
"content": "某校从高二年级期中考试的学生中抽取 $60$ 名学生, 其成绩(均为整数)的频率分布直方图如图所示, 现从成绩 70 分以上(包括 70 分)的学生中任选两人, 则他们的分数在同一分数段的概率为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, xscale = 0.06, yscale = 100]\n\\draw [->] (30,0) -- (32,0) -- (33.5,0.002) -- (36.5,-0.002) -- (38,0) -- (115,0) node [below] {分数};\n\\draw [->] (30,0) -- (30,0.040) node [left] {$\\dfrac{\\text{频率}}{\\text{组距}}$};\n\\draw (30,0) node [below left] {$O$};\n\\foreach \\i/\\j in {40/0.005,50/0.015,60/0.020,70/0.030,80/0.025,90/0.005}\n{\\draw (\\i,0) node [below] {$\\i$} --++ (0,\\j) --++ (10,0) --++ (0,-\\j);};\n\\foreach \\i/\\j/\\k in {50/0.015,60/0.020,70/0.030,80/0.025,90/0.005}\n{\\draw [dashed] (\\i,\\j) -- (30,\\j) node [left] {$\\k$};};\n\\draw (100,0) node [below] {$100$};\n\\end{tikzpicture}\n\\end{center}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022895": {
|
||||
"id": "022895",
|
||||
"content": "已知等差数列 $\\{a_n\\}$ 的公差 $d=3$, $S_n$ 表示 $\\{a_n\\}$ 的前 $n$ 项和, 若数列 $\\{S_n\\}$ 是严格增数列, 则 $a_1$ 的取值范围是\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022896": {
|
||||
"id": "022896",
|
||||
"content": "已知函数 $f(x)$ 是定义在 $\\mathrm{R}$ 上的周期为 4 的奇函数. 当 $0<x \\leq 2$ 时, $f(x)=x^3-a x+1$, 则实数 $a$ 的值等于\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022897": {
|
||||
"id": "022897",
|
||||
"content": "已知 $a>b>0$, 那么, 当代数式 $a^2+\\dfrac{9}{b(a-b)}$ 取最小值时, 点 $P(a, b)$ 的坐标为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022898": {
|
||||
"id": "022898",
|
||||
"content": "正方形 $ABCD$ 的边长为 $6$, $O$ 是正方形 $ABCD$ 的中心, 过中心 $O$ 的直线 $l$ 与边 $AB$ 交于点 $M$, 与边 $CD$交于点 $N, P$ 为平面上一点, 满足 $3 \\overrightarrow{OP}=\\lambda \\overrightarrow{OB}+(1-\\lambda) \\overrightarrow{OC}$, 则 $\\overrightarrow{PM}\\cdot \\overrightarrow{PN}$ 的最小值为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022899": {
|
||||
"id": "022899",
|
||||
"content": "若 $a<0<b$, 则下列不等式恒成立的是\\bracket{20}.\n\\fourch{$\\dfrac{1}{a}>\\dfrac{1}{b}$}{$-a>b$}{$a^3<b^3$}{$a^2>b^2$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022900": {
|
||||
"id": "022900",
|
||||
"content": "如图, 在底面半径和高均为 $\\sqrt{2}$ 的圆锥中, $AB$、$CD$ 是底面圆 $O$ 的两条互相垂直的直径, $E$ 是母线 $PB$ 的中点. 已知过 $CD$ 与 $E$ 的平面与圆锥侧面的交线是以 $E$ 为顶点的抛物线的一部分, 则该抛物线的焦点到圆锥顶点 $P$的距离等于\\bracket{20}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 2]\n\\def\\r{1}\n\\def\\h{1}\n\\draw ({-\\r},0,0) node [left] {$A$} coordinate (A) -- (0,\\h,0) node [above] {$P$} coordinate (P) -- (\\r,0,0) node [right] {$B$} coordinate (B);\n\\draw (0,0,0) node [below left] {$O$} coordinate (O);\n\\draw (A) arc (180:360:{\\r} and {\\r/4});\n\\draw [dashed] (A) arc (180:0:{\\r} and {\\r/4});\n\\draw [dashed] (A) -- (B) (O) -- (P);\n\\draw ($(P)!0.5!(B)$) node [above right] {$E$} coordinate (E);\n\\draw [dashed] (O) -- (E);\n\\draw ({\\r*cos(-70)},{\\r/4*sin(-70)}) node [below] {$C$} coordinate (C);\n\\draw ({\\r*cos(110)},{\\r/4*sin(110)}) node [below] {$D$} coordinate (D);\n\\draw (C) .. controls +({\\r/10},{\\r/10}) and +({\\r*cos(-70)/3},{\\r/4*sin(-70)/3}) .. (E);\n\\draw [dashed] (D) .. controls +({\\r/10},{\\r/10}) and +({-\\r*cos(-70)/3},{-\\r/4*sin(-70)/3}) .. (E) (C) -- (D);\n\\end{tikzpicture}\n\\end{center}\n\\fourch{$\\dfrac{1}{2}$}{$1$}{$\\dfrac{\\sqrt{5}}{2}$}{$\\dfrac{\\sqrt{10}}{4}$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022901": {
|
||||
"id": "022901",
|
||||
"content": "设 $H$ 是 $\\triangle ABC$ 的垂心, 且 $3 \\overrightarrow{HA}+4 \\overrightarrow{HB}+5 \\overrightarrow{HC}=\\overrightarrow{0}$, 则 $\\cos \\angle BHC$ 的值为\\bracket{20}.\n\\fourch{$-\\dfrac{\\sqrt{30}}{10}$}{$-\\dfrac{\\sqrt{5}}{5}$}{$-\\dfrac{\\sqrt{70}}{14}$}{$-\\dfrac{\\sqrt{6}}{6}$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022902": {
|
||||
"id": "022902",
|
||||
"content": "如图所示, 圆锥 $SO$ 的底面圆半径 $|OA|=1$, 母线 $|SA|=3$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.6]\n\\draw (0,0) node [left] {$O$} coordinate (O);\n\\draw (1,0) node [below] {$A$} coordinate (A);\n\\draw (0,{2*sqrt(2)}) node [above left] {$S$} coordinate (S);\n\\draw (A) arc ({-acos(1/3)}:{-acos(1/3)+120}:3) node [above] {$B$} coordinate (B);\n\\draw (A)--(S)--(-1,0) arc (180:360:1 and 0.25) (B)--(S);\n\\draw [dashed] (S)--(O)--(A) arc (0:180:1 and 0.25);\n\\end{tikzpicture}\n\\end{center}\n(1) 求此圆锥的体积和侧面展开图扇形的面积;\\\\\n(2) 过点 $O$ 在圆锥底面作 $OA$ 的垂线交底面圆圆弧于点 $P$, 设线段 $SO$ 中点为 $M$, 求异面直线 $AM$ 与 $PS$ 所成角大小.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022903": {
|
||||
"id": "022903",
|
||||
"content": "已知函数 $f(x)=\\dfrac{\\sqrt{3}}{2}\\sin 2 x-\\cos ^2 x-\\dfrac{1}{2}$.\\\\\n(1) 求函数 $f(x)$ 的最小正周期及单调增区间;\\\\\n(2) 设 $\\triangle ABC$ 的内角 $A, B, C$ 所对的边分别为 $a, b, c$, 且 $c=\\sqrt{3}$, $f(C)=0$, 若 $\\sin B=2 \\sin A$, 求 $a$、$b$ 的值.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022904": {
|
||||
"id": "022904",
|
||||
"content": "某辆汽车以 $x$ 公里/小时速度在高速公路上匀速行驶 (考虑到高速公路行车安全要求 $60 \\leq x \\leq 120$) 时, 每小时的油耗 (所需要的汽油量) 为 $\\dfrac{1}{5}(x-100+\\dfrac{4500}{x})$ 升.\\\\\n(1) 欲使每小时的油耗不超过 9 升, 求 $x$ 的取值范围;\\\\\n(2) 求该汽车行驶 100 公里的油耗 $y$ 关于汽车行驶速度 $x$ 的函数, 并求 $y$ 的最小值.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20231130\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"030001": {
|
||||
"id": "030001",
|
||||
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",
|
||||
|
|
|
|||
Reference in New Issue