20221010evening

This commit is contained in:
Wang Weiye 2022-10-10 18:26:56 +08:00
parent a6f0b421ff
commit c43b618059
13 changed files with 163 additions and 102 deletions

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"metadata": {},
"outputs": [
{
@ -11,7 +11,7 @@
"0"
]
},
"execution_count": 1,
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@ -21,7 +21,8 @@
"\n",
"\"\"\"---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---\"\"\"\n",
"keywords_dict_table = [\n",
" {\"tags\":[\"第五单元\"]}\n",
" {\"content\":[\"棱柱\",\"圆柱\",\"棱锥\",\"圆锥\",\"棱台\",\"圆台\",\"球\",\"多面体\",\"旋转体\"], \"content_not\":[\"体积\",\"表面积\",\"侧面积\"], \"tags\":[\"第五单元\"]},\n",
" {\"objs\":[\"K0615\",\"K0618\",\"K0621\",\"K0622\"]}\n",
"]\n",
"\"\"\"---关键字设置完毕---\"\"\"\n",
"# 示例: keywords_dict_table = [\n",

View File

@ -2,50 +2,52 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 填空题 1\n",
"2 解答题 5\n",
"3 解答题 2\n",
"4 填空题 1\n",
"5 填空题 1\n",
"6 填空题 1\n",
"7 解答题 4\n",
"1 解答题 1\n",
"2 解答题 1\n",
"3 解答题 1\n",
"4 解答题 1\n",
"5 填空题 2\n",
"6 解答题 2\n",
"7 填空题 10\n",
"8 解答题 1\n",
"9 选择题 2\n",
"10 填空题 1\n",
"9 解答题 1\n",
"10 解答题 1\n",
"11 解答题 1\n",
"12 解答题 1\n",
"13 填空题 1\n",
"13 填空题 6\n",
"14 解答题 1\n",
"15 解答题 2\n",
"15 填空题 1\n",
"16 解答题 1\n",
"1 填空题 1\n",
"2 填空题 1\n",
"3 填空题 1\n",
"17 填空题 3\n",
"18 填空题 1\n",
"19 填空题 1\n",
"1 解答题 2\n",
"2 解答题 1\n",
"3 填空题 6\n",
"4 填空题 1\n",
"5 填空题 1\n",
"6 填空题 1\n",
"7 填空题 1\n",
"8 填空题 1\n",
"5 选择题 1\n",
"6 选择题 1\n",
"7 填空题 2\n",
"8 解答题 1\n",
"9 解答题 1\n",
"10 填空题 1\n",
"11 填空题 1\n",
"12 选择题 1\n",
"13 解答题 1\n",
"14 解答题 3\n"
"10 解答题 1\n",
"11 解答题 1\n",
"12 解答题 2\n",
"13 解答题 1\n"
]
}
],
"source": [
"import os,re\n",
"#修改文件名\n",
"filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\18_复数的代数运算与性质.tex\"\n",
"filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\20_描述空间位置关系的公理.tex\"\n",
"# filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\上学期周末卷\\国庆卷.tex\"\n",
"outputfile = \"临时文件/题目状态.txt\"\n",
"\n",

View File

@ -33,24 +33,24 @@ number=\chinese{section},
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}

View File

@ -33,24 +33,24 @@ number=\chinese{section},
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}

View File

@ -33,24 +33,24 @@ number=\chinese{section},
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}

View File

@ -21,24 +21,24 @@
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}
\begin{document}

View File

@ -19,29 +19,29 @@
\renewcommand{\baselinestretch}{2}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}
\begin{document}
\begin{longtable}{|p{.15\textwidth}|p{.15\textwidth}|p{.65\textwidth}|}
\begin{longtable}{|p{.15\linewidth}|p{.15\linewidth}|p{.65\linewidth}|}
\hline
课时目标 & 对应单元目标 & 目标内容 \\ \hline
课时目标待替换
@ -50,7 +50,7 @@ A.~#1 &B.~#2& C.~#3& D.~#4
\newpage
\begin{longtable}{|p{.15\textwidth}|p{.75\textwidth}|}
\begin{longtable}{|p{.15\linewidth}|p{.75\linewidth}|}
\hline
单元目标 & 目标内容 \\ \hline
单元目标待替换

View File

@ -21,24 +21,24 @@
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}
\begin{document}

View File

@ -22,24 +22,24 @@
\newtheorem{prop}{性质~}
\newcommand{\blank}[1]{\underline{\hbox to #1pt{}}}
\newcommand{\bracket}[1]{(\hbox to #1pt{})}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\textwidth}}
\newcommand{\onech}[4]{\par\begin{tabular}{p{.9\linewidth}}
A.~#1\\
B.~#2\\
C.~#3\\
D.~#4
\end{tabular}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\twoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
A.~#1& B.~#2\\
C.~#3& D.~#4
\end{tabular}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\textwidth}p{.46\textwidth}}
\newcommand{\vartwoch}[4]{\par\begin{tabular}{p{.46\linewidth}p{.46\linewidth}}
(1)~#1& (2)~#2\\
(3)~#3& (4)~#4
\end{tabular}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\fourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
A.~#1 &B.~#2& C.~#3& D.~#4
\end{tabular}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}p{.23\textwidth}}
\newcommand{\varfourch}[4]{\par\begin{tabular}{p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}p{.23\linewidth}}
(1)~#1 &(2)~#2& (3)~#3& (4)~#4
\end{tabular}}
\begin{document}

View File

@ -9,8 +9,8 @@
"import os,re,json,time\n",
"\n",
"\"\"\"---设置原题目id与新题目id---\"\"\"\n",
"old_id = \"3541\"\n",
"new_id = \"30110\"\n",
"old_id = \"1598\"\n",
"new_id = \"30112\"\n",
"\"\"\"---设置完毕---\"\"\"\n",
"\n",
"old_id = old_id.zfill(6)\n",

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {},
"outputs": [
{
@ -13,9 +13,11 @@
"题块 1 处理完毕.\n",
"正在处理题块 2 .\n",
"题块 2 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/22_空间两平面的位置关系_预选_教师_20221009.tex\n",
"正在处理题块 3 .\n",
"题块 3 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/周末卷04_教师_20221010.tex\n",
"0\n",
"开始编译学生版本pdf文件: 临时文件/22_空间两平面的位置关系_预选_学生_20221009.tex\n",
"开始编译学生版本pdf文件: 临时文件/周末卷04_学生_20221010.tex\n",
"0\n"
]
}
@ -28,19 +30,19 @@
"\"\"\"---设置模式结束---\"\"\"\n",
"\n",
"\"\"\"---设置模板文件名---\"\"\"\n",
"template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"# template_file = \"模板文件/测验周末卷模板.tex\"\n",
"# template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"template_file = \"模板文件/测验周末卷模板.tex\"\n",
"# template_file = \"模板文件/日常选题讲义模板.tex\"\n",
"\"\"\"---设置模板文件名结束---\"\"\"\n",
"\n",
"\"\"\"---设置其他预处理替换命令---\"\"\"\n",
"#2023届第一轮讲义更换标题\n",
"exec_list = [(\"标题数字待处理\",\"22\"),(\"标题文字待处理\",\"空间两平面的位置关系\")] \n",
"enumi_mode = 0\n",
"# exec_list = [(\"标题数字待处理\",\"20\"),(\"标题文字待处理\",\"描述空间位置关系的公理\")] \n",
"# enumi_mode = 0\n",
"\n",
"#2023届测验卷与周末卷\n",
"# exec_list = [(\"标题替换\",\"测验03\")]\n",
"# enumi_mode = 1\n",
"exec_list = [(\"标题替换\",\"周末卷04\")]\n",
"enumi_mode = 1\n",
"\n",
"#日常选题讲义\n",
"# exec_list = [(\"标题文字待处理\",\"2022年国庆卷(易错题订正)\")] \n",
@ -49,14 +51,15 @@
"\"\"\"---其他预处理替换命令结束---\"\"\"\n",
"\n",
"\"\"\"---设置目标文件名---\"\"\"\n",
"destination_file = \"临时文件/22_空间两平面的位置关系_预选\"\n",
"destination_file = \"临时文件/周末卷04\"\n",
"\"\"\"---设置目标文件名结束---\"\"\"\n",
"\n",
"\n",
"\"\"\"---设置题号数据---\"\"\"\n",
"problems = [\n",
"\"30095,1649,9163,9164,30096,30100,9698,3499,1665,303,1659,1677,30096,9701,188,30097,9702\",\n",
"\"9156,1645,1646,9158,9697,9697,1670,1704,9154,294,9700,189\"\n",
"\"1853,30108,3355,655,724,1860,2038,30106,30107,3621\",\n",
"\"1846,2013,3703\",\n",
"\"1557,4702\"\n",
"]\n",
"\"\"\"---设置题号数据结束---\"\"\"\n",
"\n",

View File

@ -2,16 +2,16 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"开始编译教师版本pdf文件: 临时文件/测试_教师用_20221009.tex\n",
"开始编译教师版本pdf文件: 临时文件/多面体选题_教师用_20221010.tex\n",
"0\n",
"开始编译学生版本pdf文件: 临时文件/测试_学生用_20221009.tex\n",
"开始编译学生版本pdf文件: 临时文件/多面体选题_学生用_20221010.tex\n",
"0\n"
]
}
@ -26,14 +26,14 @@
"\"\"\"---设置题目列表---\"\"\"\n",
"#留空为编译全题库, a为读取临时文件中的题号筛选.txt文件生成题库\n",
"problems = r\"\"\"\n",
"2026\n",
"a\n",
"\n",
"\"\"\"\n",
"\"\"\"---设置题目列表结束---\"\"\"\n",
"\n",
"\"\"\"---设置文件名---\"\"\"\n",
"#目录和文件的分隔务必用/\n",
"filename = \"临时文件/测试\"\n",
"filename = \"临时文件/多面体选题\"\n",
"\"\"\"---设置文件名结束---\"\"\"\n",
"\n",
"\n",
@ -90,6 +90,7 @@
"elif problems.strip()[0] == \"a\":\n",
" with open(\"临时文件/题号筛选.txt\",\"r\",encoding = \"utf8\") as f:\n",
" problems = f.read()\n",
" problem_list = [id for id in generate_number_set(problems.strip(),pro_dict) if id in pro_dict]\n",
"else:\n",
" problem_list = [id for id in generate_number_set(problems.strip(),pro_dict) if id in pro_dict]\n",
"\n",

View File

@ -41117,7 +41117,9 @@
"20220625\t王伟叶"
],
"same": [],
"related": [],
"related": [
"030111"
],
"remark": "",
"space": ""
},
@ -41151,7 +41153,7 @@
},
"001597": {
"id": "001597",
"content": "指出图中正方体各线段所在直线的位置关系(相交, 平行或异面):\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n --++ (0,3) node [above right] {$C'$} coordinate (C1)\n --++ (-3,0) node [above left] {$D'$} coordinate (D1) --++ (225:{3/2}) node [left] {$A'$} coordinate (A1) -- cycle;\n \\draw (A) ++ (3,3) node [right] {$B'$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n \\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,3);\n \\draw [dashed] (D1) -- (B) (A1) -- (C);\n \\draw (C) -- (B1) (A1) -- (C1);\n\\end{tikzpicture}\n\\end{center}\n\\begin{enumerate}[\\blank{50}(1)]\n\\item $AB$和$CC'$;\\\\ \n\\item $A'C$和$BD'$;\\\\ \n\\item $AA'$和$CB'$;\\\\ \n\\item $A'C'$和$CB'$;\\\\ \n\\item $A'B'$和$DC$;\\\\ \n\\item $BD'$和$DC$.\\\\ \n\\end{enumerate}",
"content": "指出图中正方体各线段所在直线的位置关系(相交, 平行或异面):\n\\begin{center}\n\\begin{tikzpicture}[scale = 0.5]\n \\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n --++ (0,3) node [above right] {$C'$} coordinate (C1)\n --++ (-3,0) node [above left] {$D'$} coordinate (D1) --++ (225:{3/2}) node [left] {$A'$} coordinate (A1) -- cycle;\n \\draw (A) ++ (3,3) node [right] {$B'$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n \\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,3);\n \\draw [dashed] (D1) -- (B) (A1) -- (C);\n \\draw (C) -- (B1) (A1) -- (C1);\n\\end{tikzpicture}\n\\end{center}\n(1) $AB$和$CC'$\\blank{20};\n(2) $A'C$和$BD'$\\blank{20};\n(3) $AA'$和$CB'$\\blank{20};\n(4) $A'C'$和$CB'$\\blank{20};\n(5) $A'B'$和$DC$\\blank{20};\n(6) $BD'$和$DC$\\blank{20}.",
"objs": [
"K0606001B"
],
@ -41199,7 +41201,9 @@
"20220625\t王伟叶"
],
"same": [],
"related": [],
"related": [
"030112"
],
"remark": "",
"space": ""
},
@ -41305,7 +41309,7 @@
},
"001603": {
"id": "001603",
"content": "如图, 在正方体$ABCD-A_1B_1C_1D_1$中, $E,F$分别是棱$A_1B_1$和棱$B_1C_1$的中点.\\\\ \n(1) 求异面直线$A_1D$和$BC_1$所成角的大小;\\\\ \n(2) 求异面直线$BE$和$CF$所成角的余弦值.\n\\begin{center}\n\\begin{tikzpicture}\n \\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n --++ (0,3) node [above right] {$C_1$} coordinate (C1)\n --++ (-3,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{3/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n \\draw (A) ++ (3,3) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n \\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,3);\n \\draw [dashed] (A1) -- (D);\n \\draw (C1) -- (B) -- ($(A1)!0.5!(B1)$) node [above] {$E$};\n \\draw (C) -- ($(C1)!0.5!(B1)$) node [above left] {$F$};\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 在正方体$ABCD-A_1B_1C_1D_1$中, $E,F$分别是棱$A_1B_1$和棱$B_1C_1$的中点.\\\\ \n(1) 求异面直线$A_1D$和$BC_1$所成角的大小;\\\\ \n(2) 求异面直线$BE$和$CF$所成角的余弦值.\n\\begin{center}\n\\begin{tikzpicture}[scale = 0.6]\n \\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n --++ (0,3) node [above right] {$C_1$} coordinate (C1)\n --++ (-3,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{3/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n \\draw (A) ++ (3,3) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n \\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,3);\n \\draw [dashed] (A1) -- (D);\n \\draw (C1) -- (B) -- ($(A1)!0.5!(B1)$) node [above] {$E$};\n \\draw (C) -- ($(C1)!0.5!(B1)$) node [above left] {$F$};\n\\end{tikzpicture}\n\\end{center}",
"objs": [
"K0607004B"
],
@ -49108,7 +49112,7 @@
},
"001910": {
"id": "001910",
"content": "已知$\\overrightarrow{a}=(1,-2),\\overrightarrow{b}=(2,3),\\overrightarrow{c}=(1,1)$, 将$\\overrightarrow{a}$表示为$\\overrightarrow{b_1}+\\overrightarrow{c_1}$的形式,\n其中$\\overrightarrow{b_1},\\overrightarrow{c_1}$分别为$\\overrightarrow{b},\\overrightarrow{c}$的单位向量, 结果为$\\overrightarrow{a}=$\\blank{30}$\\overrightarrow{b_1}+$\\blank{30}$\\overrightarrow{c_1}$.",
"content": "已知$\\overrightarrow{a}=(1,-2),\\overrightarrow{b}=(2,3),\\overrightarrow{c}=(1,1)$, 将$\\overrightarrow{a}$表示为$\\overrightarrow{b_1},\\overrightarrow{c_1}$的线性组合, 其中$\\overrightarrow{b_1},\\overrightarrow{c_1}$分别为$\\overrightarrow{b},\\overrightarrow{c}$的单位向量, 结果为$\\overrightarrow{a}=$\\blank{30}$\\overrightarrow{b_1}+$\\blank{30}$\\overrightarrow{c_1}$.",
"objs": [
"K0506003B"
],
@ -86798,7 +86802,7 @@
},
"003466": {
"id": "003466",
"content": "对于分别与两条异面直线都相交的两条直线, 下列结论中, 真命题有\\blank{50}(填入序号).\\\\\n(1) 一定是异面直线; (2) 不可能是平行直线; (3) 不可能是相交直线.",
"content": "对于分别与两条异面直线都相交的两条直线, 下列结论中, 真命题有\\blank{50}(填入序号).\\\\\n\\textcircled{1} 一定是异面直线; \\textcircled{2} 不可能是平行直线; \\textcircled{3} 不可能是相交直线.",
"objs": [],
"tags": [
"第六单元"
@ -90341,7 +90345,7 @@
},
"003621": {
"id": "003621",
"content": "已知$\\overrightarrow{a_1}, \\overrightarrow{a_2}, \\overrightarrow{b_1}, \\overrightarrow{b_2},\\cdots,\\overrightarrow{b_k}\\ (k\\in \\mathbf{N}^*)$是平面内两两互不相等的向量, 满足$|\\overrightarrow{a_1}-\\overrightarrow{a_2}|=1$, 且$|\\overrightarrow{a_i}-\\overrightarrow{b_j}|\\in \\{1,2\\}$(其中$i=1,2$, $j=1,2,\\cdots,k$), 则$k$的最大值为\\blank{50}.",
"content": "已知$\\overrightarrow{a_1}, \\overrightarrow{a_2}, \\overrightarrow{b_1}, \\overrightarrow{b_2},\\cdots,\\overrightarrow{b_k}$($k\\in \\mathbf{N}$, $k\\ge 1$)是平面内两两互不相等的向量, 满足$|\\overrightarrow{a_1}-\\overrightarrow{a_2}|=1$, 且$|\\overrightarrow{a_i}-\\overrightarrow{b_j}|\\in \\{1,2\\}$(其中$i=1,2$, $j=1,2,\\cdots,k$), 则$k$的最大值为\\blank{50}.",
"objs": [],
"tags": [
"第五单元"
@ -92258,7 +92262,7 @@
},
"003703": {
"id": "003703",
"content": "如图, 在平面内, $l_1,l_2$是两条平行直线, 它们之间的距离为$2$, 点$P$位于$l_1,l_2$的下方, 它到$l_1$的距离为$1$, 动点$N,M$分别在$l_1,l_2$上, 满足$|\\overrightarrow{PM}+\\overrightarrow{PN}|=6$, 则$\\overrightarrow{PM}\\cdot \\overrightarrow{PN}$的最大值为\\bracket{20}.\n\\fourch{$6$}{$8$}{$12$}{$15$}\n\\begin{center}\n \\begin{tikzpicture}[>=latex]\n \\draw (0,0) -- (5,0) node [right] {$l_1$} (0,2) -- (5,2) node [right] {$l_2$};\n \\draw [->] (4.5,-1) node [below right] {$P$} -- (2,0) node [below] {$N$};\n \\draw [->] (4.5,-1) -- (2.5,2) node [below] {$M$};\n \\end{tikzpicture}\n\\end{center}",
"content": "如图, 在平面内, $l_1,l_2$是两条平行直线, 它们之间的距离为$2$, 点$P$位于$l_1,l_2$的下方, 动点$N,M$分别在$l_1,l_2$上, 满足$|\\overrightarrow{PM}+\\overrightarrow{PN}|=6$, 则$\\overrightarrow{PM}\\cdot \\overrightarrow{PN}$的最大值为\\bracket{20}.\n\\fourch{$6$}{$8$}{$12$}{$15$}\n\\begin{center}\n \\begin{tikzpicture}[>=latex]\n \\draw (0,0) -- (5,0) node [right] {$l_1$} (0,2) -- (5,2) node [right] {$l_2$};\n \\draw [->] (4.5,-1) node [below right] {$P$} -- (2,0) node [below] {$N$};\n \\draw [->] (4.5,-1) -- (2.5,2) node [below] {$M$};\n \\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [
"第五单元"
@ -112418,7 +112422,7 @@
},
"004539": {
"id": "004539",
"content": "如图是正四面体的平面展开图, $M,N,G$分别为$DE,BE,FE$的中点, 则在这个四面体中, 异面直线$MN$与$CG$所成的角的大小为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[scale = 1.5]\n \\draw (0,0) node [below] {$E$} coordinate (E);\n \\draw (1,0) node [below right] {$C$} coordinate (C);\n \\draw (-1,0) node [below left] {$B$} coordinate (B);\n \\draw (0,{sqrt(3)}) node [above] {$A$} coordinate (A);\n \\draw ($(A)!0.5!(B)$) node [left] {$D$} coordinate (D);\n \\draw ($(A)!0.5!(C)$) node [right] {$F$} coordinate (F);\n \\draw ($(E)!0.5!(F)$) node [above] {$G$} coordinate (G);\n \\draw ($(D)!0.5!(E)$) node [above] {$M$} coordinate (M);\n \\draw ($(B)!0.5!(E)$) node [below] {$N$} coordinate (N);\n \\draw (A) -- (B) -- (C) -- cycle (D) -- (E) -- (F) -- cycle;\n \\draw (M) -- (N) (C) -- (G);\n \\end{tikzpicture}\n\\end{center}",
"content": "如图是正四面体的平面展开图, $M,N,G$分别为$DE,BE,FE$的中点, 则在这个四面体中, 异面直线$MN$与$CG$所成的角的大小为\\blank{50}.\n\\begin{center}\n \\begin{tikzpicture}[scale = 1]\n \\draw (0,0) node [below] {$E$} coordinate (E);\n \\draw (1,0) node [below right] {$C$} coordinate (C);\n \\draw (-1,0) node [below left] {$B$} coordinate (B);\n \\draw (0,{sqrt(3)}) node [above] {$A$} coordinate (A);\n \\draw ($(A)!0.5!(B)$) node [left] {$D$} coordinate (D);\n \\draw ($(A)!0.5!(C)$) node [right] {$F$} coordinate (F);\n \\draw ($(E)!0.5!(F)$) node [above] {$G$} coordinate (G);\n \\draw ($(D)!0.5!(E)$) node [above] {$M$} coordinate (M);\n \\draw ($(B)!0.5!(E)$) node [below] {$N$} coordinate (N);\n \\draw (A) -- (B) -- (C) -- cycle (D) -- (E) -- (F) -- cycle;\n \\draw (M) -- (N) (C) -- (G);\n \\end{tikzpicture}\n\\end{center}",
"objs": [
"K0607004B"
],
@ -228608,7 +228612,7 @@
},
"009671": {
"id": "009671",
"content": "如图, 在长方体$ABCD-A_1B_1C_1D_1$中,\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n--++ (0,2) node [above right] {$C_1$} coordinate (C1)\n--++ (-3,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{3/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (3,2) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n\\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,2);\n\\end{tikzpicture}\n\\end{center}\n(1) 设$AC$与$BD$的交点为$O$, $O$必为平面\\blank{50}与平面\\blank{50}的公共点(答案不唯一);\\\\\n(2) 画出平面$A_1BCD_1$与平面$B_1BDD_1$的交线.",
"content": "如图, 在长方体$ABCD-A_1B_1C_1D_1$中,\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.6]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (3,0) node [below right] {$B$} coordinate (B) --++ (45:{3/2}) node [right] {$C$} coordinate (C)\n--++ (0,2) node [above right] {$C_1$} coordinate (C1)\n--++ (-3,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{3/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (3,2) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{3/2}) (B1) --++ (-3,0);\n\\draw [dashed] (A) --++ (45:{3/2}) node [left] {$D$} coordinate (D) --++ (3,0) (D) --++ (0,2);\n\\end{tikzpicture}\n\\end{center}\n(1) 设$AC$与$BD$的交点为$O$, $O$必为平面\\blank{50}与平面\\blank{50}的公共点(答案不唯一);\\\\\n(2) 画出平面$A_1BCD_1$与平面$B_1BDD_1$的交线.",
"objs": [],
"tags": [
"第六单元"
@ -228669,7 +228673,7 @@
"same": [],
"related": [],
"remark": "",
"space": "12ex"
"space": "0ex"
},
"009674": {
"id": "009674",
@ -246192,7 +246196,7 @@
},
"010454": {
"id": "010454",
"content": "如图, 在四面体$ABCD$中, $AC=8$, $BD=6$, $M$、$N$分别为$AB$、$CD$的中点, 并且异面直线$AC$与$BD$所成的角为$90^\\circ$. 求$MN$的长.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [left] {$D$} coordinate (D);\n\\draw (3,0) node [right] {$B$} coordinate (B);\n\\draw (1.4,2.3) node [above] {$A$} coordinate (A);\n\\draw (2,-0.8) node [below] {$C$} coordinate (C);\n\\draw ($(B)!0.5!(C)$) node [below right] {$N$} coordinate (N);\n\\draw ($(A)!0.5!(D)$) node [above left] {$M$} coordinate (M);\n\\draw (A) -- (C) (B) -- (C) -- (D) (D) -- (A) -- (B);\n\\draw [dashed] (M) -- (N) (B) -- (D);\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 在四面体$ABCD$中, $AC=8$, $BD=6$, $M$、$N$分别为$AB$、$CD$的中点, 并且异面直线$AC$与$BD$所成的角为$90^\\circ$. 求$MN$的长.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [left] {$B$} coordinate (B);\n\\draw (3,0) node [right] {$D$} coordinate (D);\n\\draw (1.4,2.3) node [above] {$A$} coordinate (A);\n\\draw (2,-0.8) node [below] {$C$} coordinate (C);\n\\draw ($(D)!0.5!(C)$) node [below right] {$N$} coordinate (N);\n\\draw ($(A)!0.5!(B)$) node [above left] {$M$} coordinate (M);\n\\draw (A) -- (C) (B) -- (C) -- (D) (D) -- (A) -- (B);\n\\draw [dashed] (M) -- (N) (B) -- (D);\n\\end{tikzpicture}\n\\end{center}",
"objs": [
"K0607001B"
],
@ -287811,7 +287815,7 @@
},
"030080": {
"id": "030080",
"content": "已知三条直线$l_1$, $l_2$和$l_3$两两相交, 且不交于同一个点. 求证: 直线$l_1l_2$和$l_3$在同一个平面上.",
"content": "已知三条直线$l_1$, $l_2$和$l_3$两两相交, 且不交于同一个点. 求证: 直线$l_1$, $l_2$和$l_3$在同一个平面上.",
"objs": [],
"tags": [],
"genre": "解答题",
@ -287826,11 +287830,11 @@
"same": [],
"related": [],
"remark": "",
"space": ""
"space": "12ex"
},
"030081": {
"id": "030081",
"content": "已知$E$、$F$分别是正方体$ABCD-A_1B_1C_1D_1$的棱$A_1B_1$、$B_1C_1$的中点. 画出由$D$、$E$、$F$确定的平面与正方体表面的交线.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{3}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(A1)!0.5!(B1)$) node [above] {$E$} coordinate (E);\n\\draw ($(B1)!0.5!(C1)$) node [above] {$F$} coordinate (F);\n\\filldraw (D) circle (0.03) (E) circle (0.03) (F) circle (0.03);\n\\end{tikzpicture}\n\\end{center}",
"content": "已知$E$、$F$分别是正方体$ABCD-A_1B_1C_1D_1$的棱$A_1B_1$、$B_1C_1$的中点. 画出由$D$、$E$、$F$确定的平面与正方体表面的交线.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(A1)!0.5!(B1)$) node [above] {$E$} coordinate (E);\n\\draw ($(B1)!0.5!(C1)$) node [above] {$F$} coordinate (F);\n\\filldraw (D) circle (0.03) (E) circle (0.03) (F) circle (0.03);\n\\end{tikzpicture}\n\\end{center}",
"objs": [
"K0603003B",
"K0603005B"
@ -287852,7 +287856,7 @@
},
"030082": {
"id": "030082",
"content": "如图, 已知$E$、$F$分别是正方体$ABCD-A_1B_1C_1D_1$的棱$A_1A$、$C_1C$的中点. 求证: 四边形$BED_1F$是平行四边形.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(A)!0.5!(A1)$) node [left] {$E$} coordinate (E);\n\\draw ($(C)!0.5!(C1)$) node [right] {$F$} coordinate (F);\n\\draw (E) -- (B) -- (F);\n\\draw [dashed] (E) -- (D1) -- (F);\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 已知$E$、$F$分别是正方体$ABCD-A_1B_1C_1D_1$的棱$A_1A$、$C_1C$的中点. 求证: 四边形$BED_1F$是平行四边形.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{1.5}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw ($(A)!0.5!(A1)$) node [left] {$E$} coordinate (E);\n\\draw ($(C)!0.5!(C1)$) node [right] {$F$} coordinate (F);\n\\draw (E) -- (B) -- (F);\n\\draw [dashed] (E) -- (D1) -- (F);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
@ -287894,7 +287898,7 @@
},
"030084": {
"id": "030084",
"content": "如图, 在四面体$A-BCD$中, $E,F,G$分别为$AB,AC,AD$上的点. 若$EF\\parallel BC$, $FG\\parallel CD$, 则$\\triangle EFG$和$\\triangle BCD$有什么关系? 为什么?\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [above] {$A$} coordinate (A);\n\\draw (-0.5,-1) node [left] {$E$} coordinate (E);\n\\draw (0.5,-1) node [right] {$G$} coordinate (G);\n\\draw (0.2,-1.4) node [below left] {$F$} coordinate (F);\n\\draw ($(A)!2!(E)$) node [left] {$B$} coordinate (B);\n\\draw ($(A)!2!(F)$) node [below] {$C$} coordinate (C);\n\\draw ($(A)!2!(G)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) (A) -- (C) (A) -- (D) (B) -- (C) -- (D) (E) -- (F) -- (G);\n\\draw [dashed] (E) -- (G) (B) -- (D);\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 在四面体$A-BCD$中, $E,F,G$分别为$AB,AC,AD$上的点. 若$EF\\parallel BC$, $FG\\parallel CD$, 则$\\triangle EFG$和$\\triangle BCD$有什么关系? 为什么?\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.7]\n\\draw (0,0) node [above] {$A$} coordinate (A);\n\\draw (-0.5,-1) node [left] {$E$} coordinate (E);\n\\draw (0.5,-1) node [right] {$G$} coordinate (G);\n\\draw (0.2,-1.4) node [below left] {$F$} coordinate (F);\n\\draw ($(A)!2!(E)$) node [left] {$B$} coordinate (B);\n\\draw ($(A)!2!(F)$) node [below] {$C$} coordinate (C);\n\\draw ($(A)!2!(G)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) (A) -- (C) (A) -- (D) (B) -- (C) -- (D) (E) -- (F) -- (G);\n\\draw [dashed] (E) -- (G) (B) -- (D);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
@ -287930,7 +287934,7 @@
"same": [],
"related": [],
"remark": "",
"space": ""
"space": "18ex"
},
"030086": {
"id": "030086",
@ -288490,5 +288494,55 @@
],
"remark": "",
"space": ""
},
"030111": {
"id": "030111",
"content": "判断下列命题的真假, 在横线上用``T''或``F''表示.\\\\\n\\blank{20}(1) 空间任意三点确定一个平面;\\\\ \n\\blank{20}(2) 空间任意两条直线确定一个平面;\\\\ \n\\blank{20}(3) 空间两条平行直线确定一个平面;\\\\ \n\\blank{20}(4) 空间一条直线和不在该直线上的一个点确定一个平面;\\\\ \n\\blank{20}(5) 空间两条没有交点的直线必平行;\\\\ \n\\blank{20}(6) 若空间四边形$ABCD$若满足$AB=BC=CD=DA$, 则它一定是菱形;\\\\ \n\\blank{20}(7) 若空间的一条直线如果和一对平行直线之一相交, 则一定与另一条也相交;\\\\ \n\\blank{20}(8) 若空间三点$A,B,C$若满足$AB^2+BC^2=CA^2$, 则$\\triangle ABC$是以$B$为直角顶点的直角三角形;\\\\ \n\\blank{20}(9) 若空间三条直线两两相交, 则通过它们中至少两条的平面有且仅有$1$个;\\\\ \n\\blank{20}(10) 若空间三条直线两两相交, 则通过它们中至少两条的平面有且仅有$3$个.",
"objs": [],
"tags": [
"第一单元",
"第六单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2016届创新班作业\t2201-点线面与立体几何三公理-20221010修改",
"edit": [
"20220625\t王伟叶",
"20221010\t谈荣"
],
"same": [],
"related": [
"001595"
],
"remark": "",
"space": ""
},
"030112": {
"id": "030112",
"content": "判断下列命题的真假, 在横线上用``T''或``F''表示.\\\\\n\\blank{20}(1) 已知$\\alpha$, $\\beta$是两个平面, $l,m$是两条直线, 若$l\\subset \\alpha$, $m\\subset \\beta$, 则$l,m$异面;\\\\ \n\\blank{20}(2) 已知平面$\\alpha,\\beta$相交于直线$l$. 若直线$m\\subset \\alpha$, $l \\parallel m$, 直线$n\\subset \\beta$, $l$与$n$相交, 则$m$与$n$异面;\\\\ \n\\blank{20}(3) 已知$l,m$是异面直线, 若直线$n\\parallel l$, 则$m,n$异面;\\\\ \n\\blank{20}(4) 已知$l,m$是异面直线, 若直线$n$和$l$异面, 则$m,n$异面;\\\\ \n\\blank{20}(5) 已知$l,m$是异面直线, 若直线$n$和$l$异面, 则$m,n$共面;\\\\ \n\\blank{20}(6) 正方体的任意两条对角线(对角线指连接不在同一表面上的两顶点的线段)相交.",
"objs": [],
"tags": [
"第一单元",
"第六单元"
],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2016届创新班作业\t2202-平行相交与异面-20221010修改",
"edit": [
"20220625\t王伟叶",
"20221010\t谈荣"
],
"same": [],
"related": [
"001598"
],
"remark": "",
"space": ""
}
}