From c4cf616b474bc3e64444fd9a97c363d9db3c93b0 Mon Sep 17 00:00:00 2001 From: "weiye.wang" Date: Sun, 19 Mar 2023 22:58:47 +0800 Subject: [PATCH] 20230319 night --- 工具/关键字筛选题号.ipynb | 6 +- 工具/寻找阶段末尾空闲题号.ipynb | 2 +- 工具/批量题号选题pdf生成.ipynb | 10 +- 工具/文本文件/题号筛选.txt | 2 +- 工具/添加题目到数据库.ipynb | 132 ++-- 题库0.3/Problems.json | 1102 +++++++++++++++++++++++++++++++ 6 files changed, 1196 insertions(+), 58 deletions(-) diff --git a/工具/关键字筛选题号.ipynb b/工具/关键字筛选题号.ipynb index 79c9cf11..8390d263 100644 --- a/工具/关键字筛选题号.ipynb +++ b/工具/关键字筛选题号.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { @@ -11,7 +11,7 @@ "0" ] }, - "execution_count": 2, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -21,7 +21,7 @@ "\n", "\"\"\"---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---\"\"\"\n", "keywords_dict_table = [\n", - " {\"origin\":[\"空中课堂\"],\"origin2\":[\"2023\"]},\n", + " {\"origin\":[\"校本作业\"]},\n", "]\n", "\"\"\"---关键字设置完毕---\"\"\"\n", "# 示例: keywords_dict_table = [\n", diff --git a/工具/寻找阶段末尾空闲题号.ipynb b/工具/寻找阶段末尾空闲题号.ipynb index 77e1c347..ac346d78 100644 --- a/工具/寻找阶段末尾空闲题号.ipynb +++ b/工具/寻找阶段末尾空闲题号.ipynb @@ -12,7 +12,7 @@ "首个空闲id: 14764 , 直至 020000\n", "首个空闲id: 22048 , 直至 030000\n", "首个空闲id: 31353 , 直至 040000\n", - "首个空闲id: 40202 , 直至 999999\n" + "首个空闲id: 40246 , 直至 999999\n" ] } ], diff --git a/工具/批量题号选题pdf生成.ipynb b/工具/批量题号选题pdf生成.ipynb index 5e12783f..74431c57 100644 --- a/工具/批量题号选题pdf生成.ipynb +++ b/工具/批量题号选题pdf生成.ipynb @@ -2,16 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "开始编译教师版本pdf文件: 临时文件/本学期高一高二年级新试卷_教师用_20230318.tex\n", + "开始编译教师版本pdf文件: 临时文件/本学期高一高二年级新试卷_教师用_20230319.tex\n", "0\n", - "开始编译学生版本pdf文件: 临时文件/本学期高一高二年级新试卷_学生用_20230318.tex\n", + "开始编译学生版本pdf文件: 临时文件/本学期高一高二年级新试卷_学生用_20230319.tex\n", "0\n" ] } @@ -40,7 +40,9 @@ "\"2024届高二下学期周末卷04\":\"40161:40180\",\n", "\"2025届高一下学期周末卷04\":\"40181:40201\",\n", "\"2024届高二下学期周末卷05\":\"40202:40225\",\n", - "\"2025届高一下学期周末卷05\":\"40226:40245\"\n", + "\"2025届高一下学期周末卷05\":\"40226:40245\",\n", + "\"2024届空间向量校本作业\":\"22048:22083\",\n", + "\"2024届二项式定理校本作业\":\"22084:22105\"\n", "\n", "}\n", "\n", diff --git a/工具/文本文件/题号筛选.txt b/工具/文本文件/题号筛选.txt index 76b02e4d..95dea3dc 100644 --- a/工具/文本文件/题号筛选.txt +++ b/工具/文本文件/题号筛选.txt @@ -1 +1 @@ -014103,014104,014105,014106,014107,014108,014109,014110,014111,014112,014113,014114,014115,014116,014117,014118,014119,014120,014121,014122,014123,014124,014125,014126,014127,014128,014129,014130,014131,014132,014133,014134,014135,014136,014137,014138,014139,014140,014141,014142,014143,014144,014145,014146,014147,014148,014149,014150,014151,014152,014153,014154,014155,014156,014157,014158,014159,014160,014161,014162,014163,014164,014165,014166,014167,014168,014169,014170,014171,014172,014173,014174,014175,014176,014177,014178,014179,014180,014181,014182,014183,014184,014185,014186,014187,014188,014189,014190,014191,014192,014193,014194,014195,014196,014197,014198,014199,014200,014201,014202,014203,014204,014205,014206,014207,014208,014209,014210,014211,014212,014213,014214,014215,014216,014217,014218,014219,014220,014221,014222,014223,014224,014225,014226,014227,014228,014229,014230,014231,014232,014233,014234,014235,014236,014237,014238,014239,014240,014241,014242,014243,014244,014245,014246,014247,014248,014249,014250,014251,014252,014253,014254,014255,014256,014257,014258,014259,014260,014261,014262,014263,014264,014265,014266,014267,014268,014269,014270,014271,014272,014273,014274,014275,014276,014277,014278,014279,014280,014281,014282,014283,014284,014285,014286,014287,014288,014289,014290,014291,014292,014293,014294,014295,014296,014297,014298,014299,014300,014301,014302,014303,014304,014305,014306,014307,014308,014309,014310,014311,014312,014313,014314,014315,014316,014317,014318,014319,014320,014321,014322,014323,014324,014325,014326,014327,014328,014329,014330,014331,014332,014333,014334,014335,014336,014337,014338,014339,014340,014341,014342,014343,014344,014345,014346,014347,014348,014349,014350,014351,014352,014353,014354,014355,014356,014357,014358,014359,014360,014361,014362,014363,014364,014365,014366,014367,014368,014369,014370,014371,014372,014373,014374,014375,014376,014377,014378,014379,014380,014381,014382,014383,014384,014385,014386,014387,014388,014389,014390,014391,014392,014393,014394,014395,014396,014397,014398,014399,014400,014401,014402,014403,014404,014405,014406,014407,014408,014409,014410,014411,014412,014413,014414,014415,014416,014417,014418,014419,014420,014421,014422,014423,014424,014425,014426,014427,014428,014429,014430,014431,014432,014433,014434,014435,014436,014437,014438,014439,014440,014441,014442,014443,014444,014445,014446,014447,014448,014449,014450,014451,014452,014453,014454,014455,014456,014457,014458,014459,014460,014461,014462,014463,014464,014465,014466,014467,014468,014469,014470,014471,014472,014473,014474,014475,014476,014477,014478,014479,014480,014481,014482,014483,014484,014485,014486,014487,014488,014489,014490,014491,014492,014493,014494,014495,014496,014497,014498,014499,014500,014501,014502,014503,014504,014505,014506,014507,014508,014509,014510,014532,014533,014534,014535,014536,014537,014538,014539,014540,014541,014542,014543,014544,014545,014546,014547,014548,014549,014550,014551,014552,014553,014554,014555,014556,014557,014558,014559,014560,014561,014562,014563,014564,014565,014566,014567,014568,014569,014570,014571,014572,014573,014574,014575,014576,014577,014578,014579,014580,014581,014582,014583,014584,014585,014586,014587,014588,014589,014590,014591,014592,014593,014594,014595,014596,014597,014598,014599,014600,014601,014602,014603,014604,014605,014606,014607,014608,014609,014610,014611,014612,014613,014614,014615,014616,014617,014618,014619,014620,014621,014622,014623,014624,014625,014626,014627,031223,031224,031226,031227,031228,031229,031233 \ No newline at end of file +020001,020002,020003,020004,020005,020006,020007,020008,020009,020010,020011,020012,020013,020014,020015,020016,020017,020018,020019,020020,020021,020022,020023,020024,020025,020026,020027,020028,020029,020030,020031,020032,020033,020034,020035,020036,020037,020038,020039,020040,020041,020042,020043,020044,020045,020046,020047,020048,020049,020050,020051,020052,020053,020054,020055,020056,020057,020058,020059,020060,020061,020062,020063,020064,020065,020066,020067,020068,020069,020070,020071,020072,020073,020074,020075,020076,020077,020078,020079,020080,020081,020082,020083,020084,020085,020086,020087,020088,020089,020090,020091,020092,020093,020094,020095,020096,020097,020098,020099,020100,020101,020102,020103,020104,020105,020106,020107,020108,020109,020110,020111,020112,020113,020114,020115,020116,020117,020118,020119,020120,020121,020122,020123,020124,020125,020126,020127,020128,020129,020130,020131,020132,020133,020134,020135,020136,020137,020138,020139,020140,020141,020142,020143,020144,020145,020146,020147,020148,020149,020150,020151,020152,020153,020154,020155,020156,020157,020158,020159,020160,020161,020162,020163,020164,020165,020166,020167,020168,020169,020170,020171,020172,020173,020174,020175,020176,020177,020178,020179,020180,020181,020182,020183,020184,020185,020186,020187,020188,020189,020190,020191,020192,020193,020194,020195,020196,020197,020198,020199,020200,020201,020202,020203,020204,020205,020206,020207,020208,020209,020210,020211,020212,020213,020214,020215,020216,020217,020218,020219,020220,020221,020222,020223,020224,020225,020226,020227,020228,020229,020230,020231,020232,020233,020234,020235,020236,020237,020238,020239,020240,020241,020242,020243,020244,020245,020246,020247,020248,020249,020250,020251,020252,020253,020254,020255,020256,020257,020258,020259,020260,020261,020262,020263,020264,020265,020266,020267,020268,020269,020270,020271,020272,020273,020274,020275,020276,020277,020278,020279,020280,020281,020282,020283,020284,020285,020286,020287,020288,020289,020290,020291,020292,020293,020294,020295,020296,020297,020298,020299,020300,020301,020302,020303,020304,020305,020306,020307,020308,020309,020310,020311,020312,020313,020314,020315,020316,020317,020318,020319,020320,020321,020322,020323,020324,020325,020326,020327,020328,020329,020330,020331,020332,020333,020334,020335,020336,020337,020338,020339,020340,020341,020342,020343,020344,020345,020346,020347,020348,020349,020350,020351,020352,020353,020354,020355,020356,020357,020358,020359,020360,020361,020362,020363,020364,020365,020366,020367,020368,020369,020370,020371,020372,020373,020374,020375,020376,020377,020378,020379,020380,020381,020382,020383,020384,020385,020386,020387,020388,020389,020390,020391,020392,020393,020394,020395,020396,020397,020398,020399,020400,020401,020402,020403,020404,020405,020406,020407,020408,020409,020410,020411,020412,020413,020414,020415,020416,020417,020418,020419,020420,020421,020422,020423,020424,020425,020426,020427,020428,020429,020430,020431,020432,020433,020434,020435,020436,020437,020438,020439,020440,020441,020442,020443,020444,020445,020446,020447,020448,020449,020450,020451,020452,020453,020454,020455,020456,020457,020458,020459,020460,020461,020462,020463,020464,020465,020466,020467,020468,020469,020470,020471,020472,020473,020474,020475,020476,020477,020478,020479,020480,020481,020482,020483,020484,020485,020486,020487,020488,020489,020490,020491,020492,020493,020494,020495,020496,020497,020498,020499,020500,020501,020502,020503,020504,020505,020506,020507,020508,020509,020510,020511,020512,020513,020514,020515,020516,020517,020518,020519,020520,020521,020522,020523,020524,020525,020526,020527,020528,020529,020530,020531,020532,020533,020534,020535,020536,020537,020538,020539,020540,020541,020542,020543,020544,020545,020546,020547,020548,020549,020550,020551,020552,020553,020554,020555,020556,020557,020558,020559,020560,020561,020562,020563,020564,020565,020566,020567,020568,020569,020570,020571,020572,020573,020574,020575,020576,020577,020578,020579,020580,020581,020582,020583,020584,020585,020586,020587,020588,020589,020590,020591,020592,020593,020594,020595,020596,020597,020598,020599,020600,020601,020602,020603,020604,020605,020606,020607,020608,020609,020610,020611,020612,020613,020614,020615,020616,020617,020618,020619,020620,020621,020622,020623,020624,020625,020626,020627,020628,020629,020630,020631,020632,020633,020634,020635,020636,020637,020638,020639,020640,020641,020642,020643,020644,020645,020646,020647,020648,020649,020650,020651,020652,020653,020654,020655,020656,020657,020658,020659,020660,020661,020662,020663,020664,020665,020666,020667,020668,020669,020670,020671,020672,020673,020674,020675,020676,020677,020678,020679,020680,020681,020682,020683,020684,020685,020686,020687,020688,020689,020690,020691,020692,020693,020694,020695,020696,020697,020698,020699,020700,020701,020702,020703,020704,020705,020706,020707,020708,020709,020710,020711,020712,020713,020714,020715,020716,020717,020718,020719,020720,020721,020722,020723,020724,020725,020726,020727,020728,020729,020730,020731,020732,020733,020734,020735,020736,020737,020738,020739,020740,020741,020742,020743,020744,020745,020746,020747,020748,020749,020750,020751,020752,020753,020754,020755,020756,020757,020758,020759,020760,020761,020762,020763,020764,020765,020766,020767,020768,020769,020770,020771,020772,020773,020774,020775,020776,020777,020778,020779,020780,020781,020782,020783,020784,020785,020786,020787,020788,020789,020790,020791,020792,020793,020794,020795,020796,020797,020798,020799,020800,020801,020802,020803,020804,020805,020806,020807,020808,020809,020810,020811,020812,020813,020814,020815,020816,020817,020818,020819,020820,020821,020822,020823,020824,020825,020826,020827,020828,020829,020830,020831,020832,020833,020834,020835,020836,020837,020838,020839,020840,020841,020842,020843,020844,020845,020846,020847,020848,020849,020850,020851,020852,020853,020854,020855,020856,020857,020858,020859,020860,020861,020862,020863,020864,020865,020866,020867,020868,020869,020870,020871,020872,020873,020874,020875,020876,020877,020878,020879,020880,020881,020882,020883,020884,020885,020886,020887,020888,020889,020890,020891,020892,020893,020894,020895,020896,020897,020898,020899,020900,020901,020902,020903,020904,020905,020906,020907,020908,020909,020910,020911,020912,020913,020914,020915,020916,020917,020918,020919,020920,020921,020922,020923,020924,020925,020926,020927,020928,020929,020930,020931,020932,020933,020934,020935,020936,020937,020938,020939,020940,020941,020942,020943,020944,020945,020946,020947,020948,020949,020950,020951,020952,020953,020954,020955,020956,020957,020958,020959,020960,020961,020962,020963,020964,020965,020966,020967,020968,020969,020970,020971,020972,020973,020974,020975,020976,020977,020978,020979,020980,020981,020982,020983,020984,020985,020986,020987,020988,020989,020990,020991,020992,020993,020994,020995,020996,020997,020998,020999,021000,021001,021002,021003,021004,021005,021006,021007,021008,021009,021010,021011,021012,021013,021014,021015,021016,021017,021018,021019,021020,021021,021022,021023,021024,021025,021026,021027,021028,021029,021030,021031,021032,021033,021034,021035,021036,021037,021038,021039,021040,021041,021042,021043,021044,021045,021046,021047,021048,021049,021050,021051,021052,021053,021054,021055,021056,021057,021058,021059,021060,021061,021062,021063,021064,021065,021066,021067,021068,021069,021070,021071,021072,021073,021074,021075,021076,021077,021078,021079,021080,021081,021082,021083,021084,021085,021086,021087,021088,021089,021090,021091,021092,021093,021094,021095,021096,021097,021098,021099,021100,021101,021102,021103,021104,021105,021106,021107,021108,021109,021110,021111,021112,021113,021114,021115,021116,021117,021118,021119,021120,021121,021122,021123,021124,021125,021126,021127,021128,021129,021130,021131,021132,021133,021134,021135,021136,021137,021138,021139,021140,021141,021142,021143,021144,021145,021146,021147,021148,021149,021150,021151,021152,021153,021154,021155,021156,021157,021158,021159,021160,021161,021162,021163,021164,021165,021166,021167,021168,021169,021170,021171,021172,021173,021174,021175,021176,021177,021178,021179,021180,021181,021182,021183,021184,021185,021186,021187,021188,021189,021190,021191,021192,021193,021194,021195,021196,021197,021198,021199,021200,021201,021202,021203,021204,021205,021206,021207,021208,021209,021210,021211,021212,021213,021214,021215,021216,021217,021218,021219,021220,021221,021222,021223,021224,021225,021226,021227,021228,021229,021230,021231,021232,021233,021234,021235,021236,021237,021238,021239,021240,021241,021242,021243,021244,021245,021246,021247,021248,021249,021250,021251,021252,021253,021254,021255,021256,021257,021258,021259,021260,021261,021262,021263,021264,021265,021266,021267,021268,021269,021270,021271,021272,021273,021274,021275,021276,021277,021278,021279,021280,021281,021282,021283,021284,021285,021286,021287,021288,021289,021290,021291,021292,021293,021294,021295,021296,021297,021298,021299,021300,021301,021302,021303,021304,021305,021306,021307,021308,021309,021310,021311,021312,021313,021314,021315,021316,021317,021318,021319,021320,021321,021322,021323,021324,021325,021326,021327,021328,021329,021330,021331,021332,021333,021334,021335,021336,021337,021338,021339,021340,021341,021342,021343,021344,021345,021346,021347,021348,021349,021350,021351,021352,021353,021354,021355,021356,021357,021358,021359,021360,021361,021362,021363,021364,021365,021366,021367,021368,021369,021370,021371,021372,021373,021374,021375,021376,021377,021378,021379,021380,021381,021382,021383,021384,021385,021386,021387,021388,021389,021390,021391,021392,021393,021394,021395,021396,021397,021398,021399,021400,021401,021402,021403,021404,021405,021406,021407,021408,021409,021410,021411,021412,021413,021414,021415,021416,021417,021418,021419,021420,021421,021422,021423,021424,021425,021426,021427,021428,021429,021430,021431,021432,021433,021434,021435,021436,021437,021438,021439,021440,021441,021442,021443,021444,021445,021446,021447,021448,021449,021450,021451,021452,021453,021454,021455,021456,021457,021458,021459,021460,021461,021462,021463,021464,021465,021466,021467,021468,021469,021470,021471,021472,021473,021474,021475,021476,021477,021478,021479,021480,021481,021482,021483,021484,021485,021486,021487,021488,021489,021490,021491,021492,021493,021494,021495,021496,021497,021498,021499,021500,021501,021502,021503,021504,021505,021506,021507,021508,021509,021510,021511,021512,021513,021514,021515,021516,021517,021518,021519,021520,021521,021522,021523,021524,021525,021526,021527,021528,021529,021530,021531,021532,021533,021534,021535,021536,021537,021538,021539,021540,021541,021542,021543,021544,021545,021546,021547,021548,021549,021550,021551,021552,021553,021554,021555,021556,021557,021558,021559,021560,021561,021562,021563,021564,021565,021566,021567,021568,021569,021570,021571,021572,021573,021574,021575,021576,021577,021578,021579,021580,021581,021582,021583,021584,021585,021586,021587,021588,021589,021590,021591,021592,021593,021594,021595,021596,021597,021598,021599,021600,021601,021602,021603,021604,021605,021606,021607,021608,021609,021610,021611,021612,021613,021614,021615,021616,021617,021618,021619,021620,021621,021622,021623,021624,021625,021626,021627,021628,021629,021630,021631,021632,021633,021634,021635,021636,021637,021638,021639,021640,021641,021642,021643,021644,021645,021646,021647,021648,021649,021650,021651,021652,021653,021654,021655,021656,021657,021658,021659,021660,021661,021662,021663,021664,021665,021666,021667,021668,021669,021670,021671,021672,021673,021674,021675,021676,021677,021678,021679,021680,021681,021682,021683,021684,021685,021686,021687,021688,021689,021690,021691,021692,021693,021694,021695,021696,021697,021698,021699,021700,021701,021702,021703,021704,021705,021706,021707,021708,021709,021710,021711,021712,021713,021714,021715,021716,021717,021718,021719,021720,021721,021722,021723,021724,021725,021726,021727,021728,021729,021730,021731,021732,021733,021734,021735,021736,021737,021738,021739,021740,021741,021742,021743,021744,021745,021746,021747,021748,021749,021750,021751,021752,021753,021754,021755,021756,021757,021758,021759,021760,021761,021762,021763,021764,021765,021766,021767,021768,021769,021770,021771,021772,021773,021774,021775,021776,021777,021778,021779,021780,021781,021782,021783,021784,021785,021786,021787,021788,021789,021790,021791,021792,021793,021794,021795,021796,021797,021798,021799,021800,021801,021802,021803,021804,021805,021806,021807,021808,021809,021810,021811,021812,021813,021814,021815,021816,021817,021818,021819,021820,021821,021822,021823,021824,021825,021826,021827,021828,021829,021830,021831,021832,021833,021834,021835,021836,021837,021838,021839,021840,021841,021842,021843,021844,021845,021846,021847,021848,021849,021850,021851,021852,021853,021854,021855,021856,021857,021858,021859,021860,021861,021862,021863,021864,021865,021866,021867,021868,021869,021870,021871,021872,021873,021874,021875,021876,021877,021878,021879,021880,021881,021882,021883,021884,021885,021886,021887,021888,021889,021890,021891,021892,021893,021894,021895,021896,021897,021898,021899,021900,021901,021902,021903,021904,021905,021906,021907,021908,021909,021910,021911,021912,021913,021914,021915,021916,021917,021918,021919,021920,021921,021922,021923,021924,021925,021926,021927,021928,021929,021930,021931,021932,021933,021934,021935,021936,021937,021938,021939,021940,021941,021942,021943,021944,021945,021946,021947,021948,021949,021950,021951,021952,021953,021954,021955,021956,021957,021958,021959,021960,021961,021962,021963,021964,021965,021966,021967,021968,021969,021970,021971,021972,021973,021974,021975,021976,021977,021978,021979,021980,021981,021982,021983,021984,021985,021986,021987,021988,021989,021990,021991,021992,021993,021994,021995,021996,021997,021998,021999,022000,022001,022002,022003,022004,022005,022006,022007,022008,022009,022010,022011,022012,022013,022014,022015,022016,022017,022018,022019,022020,022021,022022,022023,022024,022025,022026,022027,022028,022029,022030,022031,022032,022033,022034,022035,022036,022037,022038,022039,022040,022041,022042,022043,022044,022045,022046,022047,030001,030029,030031 \ No newline at end of file diff --git a/工具/添加题目到数据库.ipynb b/工具/添加题目到数据库.ipynb index 6375c6df..8e3b3f1c 100644 --- a/工具/添加题目到数据库.ipynb +++ b/工具/添加题目到数据库.ipynb @@ -7,66 +7,80 @@ "outputs": [], "source": [ "#修改起始id,出处,文件名\n", - "starting_id = 40202\n", + "starting_id = 22048\n", "raworigin = \"\"\n", - "filename = r\"C:\\Users\\weiye\\Documents\\wwy sync\\临时工作区\\自拟题目10.tex\"\n", - "editor = \"20230318\\t王伟叶\"\n", + "filename = r\"C:\\Users\\weiye\\Documents\\wwy sync\\临时工作区\\自拟题目9.tex\"\n", + "editor = \"20230319\\t王伟叶\"\n", "indexed = False\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "添加题号040202, 来源: 2024届高二下学期周末卷05\n", - "添加题号040203, 来源: 2024届高二下学期周末卷05\n", - "添加题号040204, 来源: 2024届高二下学期周末卷05\n", - "添加题号040205, 来源: 2024届高二下学期周末卷05\n", - "添加题号040206, 来源: 2024届高二下学期周末卷05\n", - "添加题号040207, 来源: 2024届高二下学期周末卷05\n", - "添加题号040208, 来源: 2024届高二下学期周末卷05\n", - "添加题号040209, 来源: 2024届高二下学期周末卷05\n", - "添加题号040210, 来源: 2024届高二下学期周末卷05\n", - "添加题号040211, 来源: 2024届高二下学期周末卷05\n", - "添加题号040212, 来源: 2024届高二下学期周末卷05\n", - "添加题号040213, 来源: 2024届高二下学期周末卷05\n", - "添加题号040214, 来源: 2024届高二下学期周末卷05\n", - "添加题号040215, 来源: 2024届高二下学期周末卷05\n", - "添加题号040216, 来源: 2024届高二下学期周末卷05\n", - "添加题号040217, 来源: 2024届高二下学期周末卷05\n", - "添加题号040218, 来源: 2024届高二下学期周末卷05\n", - "添加题号040219, 来源: 2024届高二下学期周末卷05\n", - "添加题号040220, 来源: 2024届高二下学期周末卷05\n", - "添加题号040221, 来源: 2024届高二下学期周末卷05\n", - "添加题号040222, 来源: 2024届高二下学期周末卷05\n", - "添加题号040223, 来源: 2024届高二下学期周末卷05\n", - "添加题号040224, 来源: 2024届高二下学期周末卷05\n", - "添加题号040225, 来源: 2024届高二下学期周末卷05\n", - "添加题号040226, 来源: 2025届高一下学期周末卷05\n", - "添加题号040227, 来源: 2025届高一下学期周末卷05\n", - "添加题号040228, 来源: 2025届高一下学期周末卷05\n", - "添加题号040229, 来源: 2025届高一下学期周末卷05\n", - "添加题号040230, 来源: 2025届高一下学期周末卷05\n", - "添加题号040231, 来源: 2025届高一下学期周末卷05\n", - "添加题号040232, 来源: 2025届高一下学期周末卷05\n", - "添加题号040233, 来源: 2025届高一下学期周末卷05\n", - "添加题号040234, 来源: 2025届高一下学期周末卷05\n", - "添加题号040235, 来源: 2025届高一下学期周末卷05\n", - "添加题号040236, 来源: 2025届高一下学期周末卷05\n", - "添加题号040237, 来源: 2025届高一下学期周末卷05\n", - "添加题号040238, 来源: 2025届高一下学期周末卷05\n", - "添加题号040239, 来源: 2025届高一下学期周末卷05\n", - "添加题号040240, 来源: 2025届高一下学期周末卷05\n", - "添加题号040241, 来源: 2025届高一下学期周末卷05\n", - "添加题号040242, 来源: 2025届高一下学期周末卷05\n", - "添加题号040243, 来源: 2025届高一下学期周末卷05\n", - "添加题号040244, 来源: 2025届高一下学期周末卷05\n", - "添加题号040245, 来源: 2025届高一下学期周末卷05\n" + "添加题号022048, 来源: 2024届空间向量校本作业\n", + "添加题号022049, 来源: 2024届空间向量校本作业\n", + "添加题号022050, 来源: 2024届空间向量校本作业\n", + "添加题号022051, 来源: 2024届空间向量校本作业\n", + "添加题号022052, 来源: 2024届空间向量校本作业\n", + "添加题号022053, 来源: 2024届空间向量校本作业\n", + "添加题号022054, 来源: 2024届空间向量校本作业\n", + "添加题号022055, 来源: 2024届空间向量校本作业\n", + "添加题号022056, 来源: 2024届空间向量校本作业\n", + "添加题号022057, 来源: 2024届空间向量校本作业\n", + "添加题号022058, 来源: 2024届空间向量校本作业\n", + "添加题号022059, 来源: 2024届空间向量校本作业\n", + "添加题号022060, 来源: 2024届空间向量校本作业\n", + "添加题号022061, 来源: 2024届空间向量校本作业\n", + "添加题号022062, 来源: 2024届空间向量校本作业\n", + "添加题号022063, 来源: 2024届空间向量校本作业\n", + "添加题号022064, 来源: 2024届空间向量校本作业\n", + "添加题号022065, 来源: 2024届空间向量校本作业\n", + "添加题号022066, 来源: 2024届空间向量校本作业\n", + "添加题号022067, 来源: 2024届空间向量校本作业\n", + "添加题号022068, 来源: 2024届空间向量校本作业\n", + "添加题号022069, 来源: 2024届空间向量校本作业\n", + "添加题号022070, 来源: 2024届空间向量校本作业\n", + "添加题号022071, 来源: 2024届空间向量校本作业\n", + "添加题号022072, 来源: 2024届空间向量校本作业\n", + "添加题号022073, 来源: 2024届空间向量校本作业\n", + "添加题号022074, 来源: 2024届空间向量校本作业\n", + "添加题号022075, 来源: 2024届空间向量校本作业\n", + "添加题号022076, 来源: 2024届空间向量校本作业\n", + "添加题号022077, 来源: 2024届空间向量校本作业\n", + "添加题号022078, 来源: 2024届空间向量校本作业\n", + "添加题号022079, 来源: 2024届空间向量校本作业\n", + "添加题号022080, 来源: 2024届空间向量校本作业\n", + "添加题号022081, 来源: 2024届空间向量校本作业\n", + "添加题号022082, 来源: 2024届空间向量校本作业\n", + "添加题号022083, 来源: 2024届空间向量校本作业\n", + "添加题号022084, 来源: 2024届二项式定理校本作业\n", + "添加题号022085, 来源: 2024届二项式定理校本作业\n", + "添加题号022086, 来源: 2024届二项式定理校本作业\n", + "添加题号022087, 来源: 2024届二项式定理校本作业\n", + "添加题号022088, 来源: 2024届二项式定理校本作业\n", + "添加题号022089, 来源: 2024届二项式定理校本作业\n", + "添加题号022090, 来源: 2024届二项式定理校本作业\n", + "添加题号022091, 来源: 2024届二项式定理校本作业\n", + "添加题号022092, 来源: 2024届二项式定理校本作业\n", + "添加题号022093, 来源: 2024届二项式定理校本作业\n", + "添加题号022094, 来源: 2024届二项式定理校本作业\n", + "添加题号022095, 来源: 2024届二项式定理校本作业\n", + "添加题号022096, 来源: 2024届二项式定理校本作业\n", + "添加题号022097, 来源: 2024届二项式定理校本作业\n", + "添加题号022098, 来源: 2024届二项式定理校本作业\n", + "添加题号022099, 来源: 2024届二项式定理校本作业\n", + "添加题号022100, 来源: 2024届二项式定理校本作业\n", + "添加题号022101, 来源: 2024届二项式定理校本作业\n", + "添加题号022102, 来源: 2024届二项式定理校本作业\n", + "添加题号022103, 来源: 2024届二项式定理校本作业\n", + "添加题号022104, 来源: 2024届二项式定理校本作业\n", + "添加题号022105, 来源: 2024届二项式定理校本作业\n" ] } ], @@ -88,7 +102,7 @@ " for p in ProblemList_raw:\n", " startpos = data.index(p)\n", " tempdata = data[:startpos]\n", - " suflist = re.findall(r\"\\n(\\%[\\S]+)\\n\",tempdata)\n", + " suflist = re.findall(r\"\\n(\\%\\s{0,1}[\\S]+)\\n\",tempdata)\n", " if len(suflist) > 0:\n", " suffix = suflist[-1].replace(\"%\",\"\").strip()\n", " else:\n", @@ -161,6 +175,26 @@ " print(\"题号有重复, 请检查.\\n\"*5)" ] }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"\\\\documentclass[10pt,a4paper]{article}\\n\\\\usepackage[UTF8,fontset = windows]{ctex}\\n\\\\setCJKmainfont[BoldFont=黑体,ItalicFont=楷体]{华文中宋}\\n\\\\usepackage{amssymb,amsmath,amsfonts,amsthm,mathrsfs,dsfont,graphicx}\\n\\\\usepackage{ifthen,indentfirst,enumerate,color,titletoc}\\n\\\\usepackage{tikz}\\n\\\\usepackage{multicol}\\n\\\\usepackage{multirow}\\n\\\\usepackage{makecell}\\n\\\\usepackage{longtable}\\n\\\\usepackage{diagbox}\\n\\\\usepackage{picinpar}\\n\\\\usetikzlibrary{arrows,calc,intersections,patterns,decorations.pathreplacing,3d,angles,quotes,positioning,shapes.geometric}\\n\\\\usepackage[bf,small,indentafter,pagestyles]{titlesec}\\n\\\\usepackage[top=1in, bottom=1in,left=0.8in,right=0.8in]{geometry}\\n\\\\renewcommand{\\\\baselinestretch}{1.65}\\n\\\\newtheorem{defi}{定义~}\\n\\\\newtheorem{eg}{例~}\\n\\\\newtheorem{ex}{~}\\n\\\\newtheorem{rem}{注~}\\n\\\\newtheorem{thm}{定理~}\\n\\\\newtheorem{coro}{推论~}\\n\\\\newtheorem{axiom}{公理~}\\n\\\\newtheorem{prop}{性质~}\\n\\\\newcommand{\\\\blank}[1]{\\\\underline{\\\\hbox to #1pt{}}}\\n\\\\newcommand{\\\\bracket}[1]{(\\\\hbox to #1pt{})}\\n\\\\newcommand{\\\\onech}[4]{\\\\par\\\\begin{tabular}{p{.9\\\\linewidth}}\\nA.~#1\\\\\\\\\\nB.~#2\\\\\\\\\\nC.~#3\\\\\\\\\\nD.~#4\\n\\\\end{tabular}}\\n\\\\newcommand{\\\\twoch}[4]{\\\\par\\\\begin{tabular}{p{.46\\\\linewidth}p{.46\\\\linewidth}}\\nA.~#1& B.~#2\\\\\\\\\\nC.~#3& D.~#4\\n\\\\end{tabular}}\\n\\\\newcommand{\\\\vartwoch}[4]{\\\\par\\\\begin{tabular}{p{.46\\\\linewidth}p{.46\\\\linewidth}}\\n(1)~#1& (2)~#2\\\\\\\\\\n(3)~#3& (4)~#4\\n\\\\end{tabular}}\\n\\\\newcommand{\\\\fourch}[4]{\\\\par\\\\begin{tabular}{p{.23\\\\linewidth}p{.23\\\\linewidth}p{.23\\\\linewidth}p{.23\\\\linewidth}}\\nA.~#1 &B.~#2& C.~#3& D.~#4\\n\\\\end{tabular}}\\n\\\\newcommand{\\\\varfourch}[4]{\\\\par\\\\begin{tabular}{p{.23\\\\linewidth}p{.23\\\\linewidth}p{.23\\\\linewidth}p{.23\\\\linewidth}}\\n(1)~#1 &(2)~#2& (3)~#3& (4)~#4\\n\\\\end{tabular}}\\n\\\\begin{document}\\n\\n\\n\\\\begin{enumerate}\\n\\n% 2024届空间向量校本作业\\n\\n\\\\item 如图, 已知平行六面体$ABCD-A_1B_1C_1D_1$.\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex]\\n\\\\draw (0,0,0) node [below] {$D_1$} coordinate (D_1);\\n\\\\draw (2,0,0) node [below] {$A_1$} coordinate (A_1);\\n\\\\draw (0.5,0,-2) node [below] {$C_1$} coordinate (C_1);\\n\\\\draw ($(A_1)+(C_1)-(D_1)$) node [right] {$B_1$} coordinate (B_1);\\n\\\\draw (1,2,0) node [left] {$D$} coordinate (D);\\n\\\\draw ($(D)+(A_1)-(D_1)$) node [above] {$A$} coordinate (A);\\n\\\\draw ($(A)+(C_1)-(D_1)$) node [above] {$B$} coordinate (B);\\n\\\\draw ($(D)+(B)-(A)$) node [above] {$C$} coordinate (C);\\n\\\\draw ($(D_1)!0.5!(A_1)$) node [below] {$M$} coordinate (M);\\n\\\\draw ($(C)!0.5!(D)$) node [above left] {$N$} coordinate (N);\\n\\\\draw (D_1)--(A_1)--(B_1)--(B)--(C)--(D)--cycle(A)--(B)(A)--(A_1)(A)--(D);\\n\\\\draw [dashed] (C_1)--(C)(C_1)--(B_1)(C_1)--(D_1)(M)--(N);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) 写出以该平行六面体的顶点为起点与终点, 且与$\\\\overrightarrow{AB}$相等的向量;\\\\\\\\\\n(2) 写出以该平行六面体的顶点为起点与终点的$\\\\overrightarrow{AA_1}$的负向量;\\\\\\\\\\n(3) 写出以该平行六面体的顶点为起点与终点, 且与$\\\\overrightarrow{AD}$平行的向量;\\\\\\\\\\n(4) 设$M$、$N$分别是$A_1D_1$和$DC$的中点, 用$\\\\overrightarrow{AB}$、$\\\\overrightarrow{AA_1}$、$\\\\overrightarrow{AD}$表示向量$\\\\overrightarrow{MN}$.\\n\\\\item 对于平行六面体$ABCD-A_1B_1C_1D_1$, 求证: $\\\\overrightarrow{AB_1}+\\\\overrightarrow{AC}+\\\\overrightarrow{AD_1}=2 \\\\overrightarrow{AC_1}$.\\n\\\\item 在三棱锥$O-ABC$中, $G$是三角形$ABC$的重心, 用向量$\\\\overrightarrow{OA}$、$\\\\overrightarrow{OB}$、$\\\\overrightarrow{OC}$表示向量$\\\\overrightarrow{OG}$.\\n\\\\item 已知向量$\\\\overrightarrow {a}$、$\\\\overrightarrow {b}$、$\\\\overrightarrow {c}$两两垂直, 且$|\\\\overrightarrow {a}|=1$, $|\\\\overrightarrow {b}|=2$, $|\\\\overrightarrow {c}|=3$, $\\\\overrightarrow {m}=\\\\overrightarrow {a}+\\\\overrightarrow {b}+\\\\overrightarrow {c}$.\\\\\\\\\\n(1) 求$|\\\\overrightarrow {m}|$;\\\\\\\\\\n(2) 分别求$\\\\overrightarrow {m}$与$\\\\overrightarrow {a}$、$\\\\overrightarrow {b}$、$\\\\overrightarrow {c}$的夹角.\\n\\\\item 在长方体$ABCD-A_1B_1C_1D_1$中, $P$、$Q$分别是$A_1B_1$、$CD$的中点, $R$、$S$分别是棱$AA_1$、棱$CC_1$上的点, 且$AR=2RA_1$, $C_1S=2SC$, 求证: $PS\\\\parallel RQ$.\\n\\\\item 已知正方体$ABCD-A_1B_1C_1D_1$的边长为$1$. 求:\\\\\\\\\\n(1) $\\\\overrightarrow{AC} \\\\cdot \\\\overrightarrow{AA_1}$;\\\\\\\\\\n(2) $\\\\overrightarrow{AC} \\\\cdot \\\\overrightarrow{A_1C_1}$;\\\\\\\\\\n(3) $\\\\overrightarrow{AC} \\\\cdot \\\\overrightarrow{AC_1}$.\\n\\\\item 在长方体$ABCD-A' B' C' D'$中, $A' C'$和$B' D'$相交于$O'$, 求证$DO'\\\\parallel$平面$ACB'$.\\n\\\\item 在长方体$ABCD-A_1B_1C_1D_1$中, $G$是三角形$ACD_1$的重心. 求证: $3 \\\\overrightarrow{DG}=\\\\overrightarrow{DB_1}$.\\n\\\\item 在长方体$ABCD-A_1B_1C_1D_1$中, 已知$AB=6$, $AD=2$, $AA_1=1$, $P$是棱$AB$上的点且$PB=2AP$, $M$是棱$DC$上的点, 且$DM=2MC$, $N$是$B_1C_1$的中点, 求直线$PD_1$与$MN$所成的角$\\\\theta$的大小.\\n\\\\item 已知棱长为$1$的正四面体$A-BCD$中, $E$、$F$分别在$AB$、$CD$上, 且$\\\\overrightarrow{AE}=\\\\dfrac{1}{4} \\\\overrightarrow{AB}$, \\n$\\\\overrightarrow{CF}=\\\\dfrac{1}{3} \\\\overrightarrow{CD}$.\\\\\\\\\\n(1) 求直线$DE$和$BF$所成的角的大小;\\\\\\\\\\n(2) 求$|\\\\overrightarrow{EF}|$.\\n\\\\item 已知长方体$ABCD-A_1B_1C_1D_1$的高为$h$, 上、下底面是边长为$a$的正方形, 坐标原点$O$设在下底面的中心, $x$轴、$y$轴分别与下底面的对角线重合, $z$轴垂直于底面(如图). 写出下列点的坐标以及向量的坐标:\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex]\\n\\\\def\\\\l{2}\\n\\\\def\\\\m{2}\\n\\\\def\\\\n{2.5}\\n\\\\draw (0,0,0) node [below left] {$A$} coordinate (A);\\n\\\\draw (A) ++ (\\\\l,0,0) node [below ] {$B$} coordinate (B);\\n\\\\draw (A) ++ (\\\\l,0,-\\\\m) node [right] {$C$} coordinate (C);\\n\\\\draw (A) ++ (0,0,-\\\\m) node [left] {$D$} coordinate (D);\\n\\\\draw (A) -- (B) -- (C);\\n\\\\draw [dashed] (A) -- (D) -- (C);\\n\\\\draw (A) ++ (0,\\\\n,0) node [left] {$A_1$} coordinate (A1);\\n\\\\draw (B) ++ (0,\\\\n,0) node [right] {$B_1$} coordinate (B1);\\n\\\\draw (C) ++ (0,\\\\n,0) node [above right] {$C_1$} coordinate (C1);\\n\\\\draw (D) ++ (0,\\\\n,0) node [above left] {$D_1$} coordinate (D1);\\n\\\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\\n\\\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\\n\\\\draw [dashed] (D) -- (D1);\\n\\\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\\n\\\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\\n\\\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\\n\\\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1,0) node [right] {$z$} coordinate (z);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) $A$的坐标: \\\\blank{50}; (2) $D$的坐标: \\\\blank{50}; (3) $B_1$的坐标: \\\\blank{50};\\\\\\\\\\n(4) $\\\\overrightarrow{OA}$的坐标: \\\\blank{50}; (5) $\\\\overrightarrow{D_1A_1}$的坐标: \\\\blank{50}; (6) $\\\\overrightarrow{B_1D}$的坐标: \\\\blank{50}.\\n\\\\item 已知$\\\\overrightarrow {a}=(1,-5,4)$, $\\\\overrightarrow {b}=(2,1,7)$.\\\\\\\\\\n(1) 求$3 \\\\overrightarrow {a}+2 \\\\overrightarrow {b}$的坐标;\\\\\\\\\\n(2) 求$|\\\\overrightarrow {a}+\\\\overrightarrow {b}|$.\\n\\\\item 已知$\\\\overrightarrow {a}=(2,1,-2)$, $\\\\overrightarrow {b}=(5,-4,3)$, $\\\\overrightarrow {c}=(-8,4,1)$.\\\\\\\\\\n(1) 求证: $\\\\overrightarrow {a} \\\\perp \\\\overrightarrow {b}$;;\\n(2) 设$\\\\overrightarrow {a}$与$\\\\overrightarrow {c}$的夹角为$\\\\theta$, 求$\\\\cos \\\\theta$.\\n\\\\item 已知$P_1(2,5,4)$, $P_2(6,4,7)$, 设$\\\\overrightarrow {a}=\\\\overrightarrow{P_1P_2}$, 求$\\\\overrightarrow {a}$、$-\\\\overrightarrow {a}$和单位向量$\\\\overrightarrow{a_0}$的坐标.\\n\\\\item 已知$P_1(2,5,-6)$, 在$y$轴上求一点$P_2$, 使$|P_1P_2|=7$.\\n\\\\item 已知$P_1(1,2,3), P_2(5,4,7)$, 在$y$轴上求一点$Q$, 使$|P_1Q|=|P_2Q|$.\\n\\\\item 已知向量$\\\\overrightarrow {a}=(1,-3,2)$, $\\\\overrightarrow {b}=(2,0,-8)$, 求单位向量$\\\\overrightarrow {c}$, 使$\\\\overrightarrow {c}$与向量$\\\\overrightarrow {a}$、$\\\\overrightarrow {b}$都垂直. \\n\\\\item 已知平面$\\\\alpha$经过点$A(3,1,-1)$、$B(1,-1,0)$, 且平行于向量$\\\\overrightarrow {a}=(-1,0,2)$, 求平面$\\\\alpha$的一个法向量.\\n\\\\item 已知点$A$、$B$、$C$的坐标分别为$(x_1, y_1, z_1)$、$(x_2, y_2, z_2)$、$(x_3, y_3, z_3)$, $G$是$\\\\triangle ABC$的重心, 求点$G$的坐标.\\n\\\\item 已知正方体$ABCD-A_1B_1C_1D_1$, 求证: $BD_1 \\\\perp C_1D$.\\n\\\\item 正三棱柱$ABC-A_1B_1C_1$中, $AB=2AA_1=\\\\dfrac{\\\\sqrt{6}}{2}$.\\\\\\\\\\n(1) $P$点在棱$A_1B_1$上什么位置时, 异面直线$AP$与$A_1C$互相垂直?\\\\\\\\\\n(2) $P$点在棱$A_1B_1$上什么位置时, 直线$AP$与平面$A_1BC$成$30^{\\\\circ}$角?\\n\\\\item 如图, 平面$ABEF \\\\perp$平面$ABCD$, 四边形$ABEF$与$ABCD$都是直角梯形, \\n$\\\\angle BAD=\\\\angle FAB=90^{\\\\circ}$, $BC =\\\\dfrac 12 AD$且$BC\\\\parallel AD$, $BE = \\\\dfrac{1}{2} AF$且$BE\\\\parallel AF$.\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex]\\n\\\\draw (0,0,0) node [above right] {$A$} coordinate (A);\\n\\\\draw (3,0,0) node [right] {$D$} coordinate (D);\\n\\\\draw (0,3,0) node [above] {$F$} coordinate (F);\\n\\\\draw (0,0,1.5) node [below] {$B$} coordinate (B);\\n\\\\draw (B) ++ (1.5,0,0) node [below] {$C$} coordinate (C);\\n\\\\draw (B) ++ (0,1.5,0) node [left] {$E$} coordinate (E);\\n\\\\draw (B)--(C)--(D)--(F)--(E)--cycle(E)--(C);\\n\\\\draw [dashed] (A)--(D)(A)--(F)(A)--(B);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) 证明: $C, D, F, E$四点共面;\\\\\\\\\\n(2) 设$AB=BC=BE$, 求二面角$A-ED-B$的大小; \\n\\\\item 如图, 已知四棱锥$P-ABCD$的底面$ABCD$为等腰梯形, $AB\\\\parallel DC$, $AC \\\\perp BD$, $AC$与$BD$相交于点$O$, 且顶点$P$在底面上的射影恰为$O$点, 又$BO=2$, $PO=\\\\sqrt{2}$, $PB \\\\perp PD$.\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex]\\n\\\\draw (0,0,0) node [left] {$O$} coordinate (O);\\n\\\\draw (-2,0,2) node [left] {$A$} coordinate (A);\\n\\\\draw (2,0,2) node [right] {$B$} coordinate (B);\\n\\\\draw ($(O)!-0.5!(B)$) node [left] {$D$} coordinate (D);\\n\\\\draw ($(O)!-0.5!(A)$) node [right] {$C$} coordinate (C);\\n\\\\draw (O) ++ (0,2,0) node [above] {$P$} coordinate (P);\\n\\\\draw (A)--(B)--(C)--(P)--cycle(B)--(P);\\n\\\\draw [dashed] (P)--(O)(P)--(D)--(B)(A)--(C)(A)--(D)--(C);\\n\\\\draw (O) pic [draw, scale = 0.3] {right angle = B--O--A};\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) 求异面直线$PD$与$BC$所成角的余弦值;\\\\\\\\\\n(2) 求二面角$P-AB-C$的大小;\\\\\\\\\\n(3) 设点$M$在棱$PC$上, 且$\\\\dfrac{PM}{MC}=\\\\lambda$, 问$\\\\lambda$为何值时, $PC \\\\perp$平面$BMD$.\\n\\\\item 已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系, 求下列直线的一个方向向量.\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex, scale = 0.6]\\n\\\\def\\\\l{3}\\n\\\\def\\\\m{3}\\n\\\\def\\\\n{4}\\n\\\\draw (0,0,0) node [below left] {$A$} coordinate (A);\\n\\\\draw (A) ++ (\\\\l,0,0) node [below ] {$B$} coordinate (B);\\n\\\\draw (A) ++ (\\\\l,0,-\\\\m) node [right] {$C$} coordinate (C);\\n\\\\draw (A) ++ (0,0,-\\\\m) node [left] {$D$} coordinate (D);\\n\\\\draw (A) -- (B) -- (C);\\n\\\\draw [dashed] (A) -- (D) -- (C);\\n\\\\draw (A) ++ (0,\\\\n,0) node [left] {$A_1$} coordinate (A1);\\n\\\\draw (B) ++ (0,\\\\n,0) node [right] {$B_1$} coordinate (B1);\\n\\\\draw (C) ++ (0,\\\\n,0) node [above right] {$C_1$} coordinate (C1);\\n\\\\draw (D) ++ (0,\\\\n,0) node [above left] {$D_1$} coordinate (D1);\\n\\\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\\n\\\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\\n\\\\draw [dashed] (D) -- (D1);\\n\\\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\\n\\\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\\n\\\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\\n\\\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) $AD_1$;\\\\\\\\\\n(2) $AA_1$;\\\\\\\\\\n(3) $AC_1$;\\\\\\\\\\n(4) $AB_1$.\\n\\\\item 已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系. 下列向量是图中哪些经过两个顶点的直线的一个方向向量?\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex, scale = 0.6]\\n\\\\def\\\\l{3}\\n\\\\def\\\\m{3}\\n\\\\def\\\\n{4}\\n\\\\draw (0,0,0) node [below left] {$A$} coordinate (A);\\n\\\\draw (A) ++ (\\\\l,0,0) node [below ] {$B$} coordinate (B);\\n\\\\draw (A) ++ (\\\\l,0,-\\\\m) node [right] {$C$} coordinate (C);\\n\\\\draw (A) ++ (0,0,-\\\\m) node [left] {$D$} coordinate (D);\\n\\\\draw (A) -- (B) -- (C);\\n\\\\draw [dashed] (A) -- (D) -- (C);\\n\\\\draw (A) ++ (0,\\\\n,0) node [left] {$A_1$} coordinate (A1);\\n\\\\draw (B) ++ (0,\\\\n,0) node [right] {$B_1$} coordinate (B1);\\n\\\\draw (C) ++ (0,\\\\n,0) node [above right] {$C_1$} coordinate (C1);\\n\\\\draw (D) ++ (0,\\\\n,0) node [above left] {$D_1$} coordinate (D1);\\n\\\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\\n\\\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\\n\\\\draw [dashed] (D) -- (D1);\\n\\\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\\n\\\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\\n\\\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\\n\\\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) $\\\\overrightarrow {a}=(1,0,0)$;\\\\\\\\\\n(2) $\\\\overrightarrow {b}=(0,1,0)$;\\\\\\\\\\n(3) $\\\\overrightarrow {c}=(3 \\\\sqrt{2}, 0,4)$;\\\\\\\\\\n(4) $\\\\overrightarrow {d}=(0,3 \\\\sqrt{2}, 8)$.\\n\\\\item 已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系, 求下列平面的一个法向量.\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex, scale = 0.6]\\n\\\\def\\\\l{3}\\n\\\\def\\\\m{3}\\n\\\\def\\\\n{4}\\n\\\\draw (0,0,0) node [below left] {$A$} coordinate (A);\\n\\\\draw (A) ++ (\\\\l,0,0) node [below ] {$B$} coordinate (B);\\n\\\\draw (A) ++ (\\\\l,0,-\\\\m) node [right] {$C$} coordinate (C);\\n\\\\draw (A) ++ (0,0,-\\\\m) node [left] {$D$} coordinate (D);\\n\\\\draw (A) -- (B) -- (C);\\n\\\\draw [dashed] (A) -- (D) -- (C);\\n\\\\draw (A) ++ (0,\\\\n,0) node [left] {$A_1$} coordinate (A1);\\n\\\\draw (B) ++ (0,\\\\n,0) node [right] {$B_1$} coordinate (B1);\\n\\\\draw (C) ++ (0,\\\\n,0) node [above right] {$C_1$} coordinate (C1);\\n\\\\draw (D) ++ (0,\\\\n,0) node [above left] {$D_1$} coordinate (D1);\\n\\\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\\n\\\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\\n\\\\draw [dashed] (D) -- (D1);\\n\\\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\\n\\\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\\n\\\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\\n\\\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) 平面$AA_1D_1D$;\\\\\\\\\\n(2) 平面$BB_1D_1D$.\\n\\\\item 已知点$A(0,-7,0)$、$B(2,-1,1)$、$C(2,2,2)$, 求平面$ABC$的一个法向量.\\n\\\\item 已知点$S(0,6,4)$、$A(3,5,3)$、$B(-2,11,-5)$、$C(1,-1,4)$, 求点$S$到平面$ABC$的距离.\\n\\\\item 已知平面$\\\\alpha$的一个法向量$\\\\overrightarrow {n}=(3,-2,6)$, 且经过点$A(0,7,0)$, 求原点到平面$\\\\alpha$的距离.\\n\\\\item 已知三棱锥$A-BCD$的三条侧棱$AB$、$AC$、$AD$两两垂直, 且$AB=1$, $AC=2$, $AD=3$, 求顶点$A$到平面$BCD$的距离.\\n\\\\item 正三棱柱$ABC-A_1B_1C_1$中, $AB=2AA_1=\\\\dfrac{\\\\sqrt{6}}{2}$.\\\\\\\\\\n(1) $P$点在棱$A_1B_1$上什么位置时, 异面直线$AP$与$A_1C$互相垂直?\\\\\\\\\\n(2) $P$点在棱$A_1B_1$上什么位置时, 直线$AP$与平面$A_1BC$成$30^{\\\\circ}$角?\\n\\\\item 已知正方体$ABCD-A_1B_1C_1D_1$, 求二面角$B-AC-D_1$的大小.\\n\\\\item 已知$ABCD-A_1B_1C_1D_1$为正方体.\\\\\\\\\\n(1) 求直线$AC$与$B_1D$所成的角的大小;\\\\\\\\\\n(2) 求直线$B_1D$与平面$ACD_1$所成的角的大小;\\\\\\\\\\n(3) 求平面$ACD_1$与平面$B_1CD_1$所成的二面角的大小.\\n\\\\item 已知正三棱锥的底面边长和高都为$a$. 求侧面与底面所成的二面角的大小.\\n\\\\item 在三棱锥$P-ABC$中, 已知底面$ABC$是以$C$为直角的直角三角形, $PC \\\\perp$平面$ABC$, $AC=18$, $PC=6$, $BC=9$, $G$是$\\\\triangle PAB$的重心, $M$是棱$AC$的中点, 求直线$CG$与直线$BM$所成的角$\\\\theta$的大小.\\n\\\\item 已知矩形$ABCD$, 且$PD \\\\perp$平面$ABCD$, 若$PB=2$, $PB$与平面$PCD$所成的角为$45^{\\\\circ}$. $PB$与平面$ABD$所成的角为$30^{\\\\circ}$, 求:\\n\\\\begin{center}\\n\\\\begin{tikzpicture}[>=latex, scale = 1.3]\\n\\\\draw (0,0,0) node [below] {$D$} coordinate (D);\\n\\\\draw (2,0,0) node [right] {$C$} coordinate (C);\\n\\\\draw (2,0,2) node [below] {$B$} coordinate (B);\\n\\\\draw (0,0,2) node [left] {$A$} coordinate (A);\\n\\\\draw (0,2,0) node [above] {$P$} coordinate (P);\\n\\\\draw (A)--(B)--(C)--(P)--cycle(P)--(B);\\n\\\\draw [dashed] (A)--(D)--(C)(B)--(D)--(P);\\n\\\\end{tikzpicture}\\n\\\\end{center}\\n(1) $CD$的长;\\\\\\\\\\n(2) 求$PB$与$CD$所成的角;\\\\\\\\\\n(3) 求二面角$C-PB-D$的余弦值.\\n\\n% 2024届二项式定理校本作业\\n\\n\\\\item 用二项式定理展开下列两式:\\\\\\\\\\n(1) $(a+2 b)^6$;\\\\\\\\\\n(2) $(1-\\\\dfrac{1}{x})^5$.\\n\\\\item 化简:\\\\\\\\ \\n(1) $(1+\\\\sqrt{x})^5+(1-\\\\sqrt{x})^5$;\\\\\\\\\\n(2) $(2 x+y)^4-(2 x-y)^4$.\\n\\\\item 分别写出$(x-1)^{15}$的二项展开式中的前$4$项.\\n\\\\item 求$(2 a^3-3 b^2)^{10}$的二项展开式中的第$8$项.\\n\\\\item $(x-1)^n$的二项展开式中第$m$项($1 \\\\leq m \\\\leq n$且$m$、$n \\\\in \\\\mathbf{N}$)的二项式的系数是\\\\bracket{20}.\\n\\\\fourch{$\\\\mathrm{C}_n^{m-1}$}{$(-1)^{m-1} \\\\mathrm{C}_n^m$}{$\\\\mathrm{C}_n^m$}{$(-1)^m \\\\mathrm{C}_n^m$}\\n\\\\item 求$(3 x^3-\\\\dfrac{1}{3 x^3})^{10}$的二项展开式中的常数项.\\n\\\\item 已知$(1+x)^n$的二项展开式中第$4$项与第$8$项的系数相等, 求这两项的系数.\\n\\\\item 在$(\\\\sqrt[3]{x}-\\\\dfrac{2}{\\\\sqrt{x}})^{11}$的二项展开式中,\\\\\\\\\\n(1) 求含$x^2$项的二项式系数;\\\\\\\\\\n(2) 含$x^{\\\\frac{1}{3}}$的项是第几项? 并写出这项的系数.\\n\\\\item 已知$(x \\\\sin \\\\theta+1)^6$的二项展开式$x^2$项的系数与$(x-\\\\dfrac{15}{2} \\\\cos \\\\theta)^4$的二项展开式中$x^3$项的系数相等, 求$\\\\cos \\\\theta$的值.\\n\\\\item 求证: 当$n$为正整数时, $2^n-\\\\mathrm{C}_n^1 \\\\cdot 2^{n-1}+\\\\mathrm{C}_n^2 \\\\cdot 2^{n-2}+\\\\cdots+\\\\mathrm{C}_n^{n-1} \\\\cdot 2+(-1)^n=1$.\\n\\\\item 求$(1+2 x)^3(1-x)^4$展开式中$x^6$的系数.\\n\\\\item 在$(3 x-2 y)^9$的展开式中, 二项式系数的和是\\\\blank{50}, 各项系数的和是各项系数的绝对值之和是\\\\blank{50}.\\n\\\\item $\\\\mathrm{C}_n^1+3\\\\mathrm{C}_n^2+9\\\\mathrm{C}_n^3+\\\\cdots+3^{n-1} \\\\mathrm{C}_n^n$等于\\\\bracket{20}.\\n\\\\fourch{$4^n$}{$\\\\dfrac{4^n}{3}$}{$\\\\dfrac{4^n}{3}-1$}{$\\\\dfrac{4^n-1}{3}$}\\n\\\\item 求$(\\\\dfrac{\\\\sqrt{x}}{2}-\\\\dfrac{2}{\\\\sqrt{x}})^{10}$的二项展开式的正中间一项.\\n\\\\item 求$(x \\\\sqrt{y}-y \\\\sqrt{x})^{11}$的二项展开式的正中间两项.\\n\\\\item 用二项式定理证明: $99^{10}-1$能被$1000$整除.\\n\\\\item 求$77^{77}-15$除以$19$的余数.\\n\\\\item 求$(1+2 x+x^2)^{10}(1-x)^6$的展开式中各项系数之和.\\n\\\\item 在$(x^2-\\\\dfrac{3}{x})^n$的二项展开式中, 有且只有第五项的二项式系数最大, 求:\\n$\\\\mathrm{C}_n^0-\\\\dfrac{1}{2} \\\\mathrm{C}_n^1+\\\\dfrac{1}{4} \\\\mathrm{C}_n^2-\\\\cdots+(-1)^n \\\\cdot \\\\dfrac{1}{2^n} \\\\mathrm{C}_n^n$.\\n\\\\item 在$(1+3 x)^n$的二项展开式中, 末三项的二项式系数之和等于$631$.\\\\\\\\\\n(1) 求二项展开式中二项式系数最大的项;\\\\\\\\\\n(2) 求二项展开式中系数最大的项.\\n\\\\item 已知$(x+1)^n=x^n+\\\\cdots+a x^3+b x^2+c x+1$($n \\\\geq 1$, $n \\\\in \\\\mathrm{N}$), 且$a: b=3: 1$, 求$c$的值.\\n\\\\item 已知$n$为大于$1$的自然数, 用二项式定理证明: $(1+\\\\dfrac{1}{n})^n>2$.\\n\\n\\n\\\\end{enumerate}\\n\\n\\n\\n\\n\\n\\\\end{document}\"" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "problems_string" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 8e3ea943..9d6b8990 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -408527,6 +408527,1108 @@ "remark": "", "space": "12ex" }, + "022048": { + "id": "022048", + "content": "如图, 已知平行六面体$ABCD-A_1B_1C_1D_1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below] {$D_1$} coordinate (D_1);\n\\draw (2,0,0) node [below] {$A_1$} coordinate (A_1);\n\\draw (0.5,0,-2) node [below] {$C_1$} coordinate (C_1);\n\\draw ($(A_1)+(C_1)-(D_1)$) node [right] {$B_1$} coordinate (B_1);\n\\draw (1,2,0) node [left] {$D$} coordinate (D);\n\\draw ($(D)+(A_1)-(D_1)$) node [above] {$A$} coordinate (A);\n\\draw ($(A)+(C_1)-(D_1)$) node [above] {$B$} coordinate (B);\n\\draw ($(D)+(B)-(A)$) node [above] {$C$} coordinate (C);\n\\draw ($(D_1)!0.5!(A_1)$) node [below] {$M$} coordinate (M);\n\\draw ($(C)!0.5!(D)$) node [above left] {$N$} coordinate (N);\n\\draw (D_1)--(A_1)--(B_1)--(B)--(C)--(D)--cycle(A)--(B)(A)--(A_1)(A)--(D);\n\\draw [dashed] (C_1)--(C)(C_1)--(B_1)(C_1)--(D_1)(M)--(N);\n\\end{tikzpicture}\n\\end{center}\n(1) 写出以该平行六面体的顶点为起点与终点, 且与$\\overrightarrow{AB}$相等的向量;\\\\\n(2) 写出以该平行六面体的顶点为起点与终点的$\\overrightarrow{AA_1}$的负向量;\\\\\n(3) 写出以该平行六面体的顶点为起点与终点, 且与$\\overrightarrow{AD}$平行的向量;\\\\\n(4) 设$M$、$N$分别是$A_1D_1$和$DC$的中点, 用$\\overrightarrow{AB}$、$\\overrightarrow{AA_1}$、$\\overrightarrow{AD}$表示向量$\\overrightarrow{MN}$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022049": { + "id": "022049", + "content": "对于平行六面体$ABCD-A_1B_1C_1D_1$, 求证: $\\overrightarrow{AB_1}+\\overrightarrow{AC}+\\overrightarrow{AD_1}=2 \\overrightarrow{AC_1}$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022050": { + "id": "022050", + "content": "在三棱锥$O-ABC$中, $G$是三角形$ABC$的重心, 用向量$\\overrightarrow{OA}$、$\\overrightarrow{OB}$、$\\overrightarrow{OC}$表示向量$\\overrightarrow{OG}$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022051": { + "id": "022051", + "content": "已知向量$\\overrightarrow {a}$、$\\overrightarrow {b}$、$\\overrightarrow {c}$两两垂直, 且$|\\overrightarrow {a}|=1$, $|\\overrightarrow {b}|=2$, $|\\overrightarrow {c}|=3$, $\\overrightarrow {m}=\\overrightarrow {a}+\\overrightarrow {b}+\\overrightarrow {c}$.\\\\\n(1) 求$|\\overrightarrow {m}|$;\\\\\n(2) 分别求$\\overrightarrow {m}$与$\\overrightarrow {a}$、$\\overrightarrow {b}$、$\\overrightarrow {c}$的夹角.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022052": { + "id": "022052", + "content": "在长方体$ABCD-A_1B_1C_1D_1$中, $P$、$Q$分别是$A_1B_1$、$CD$的中点, $R$、$S$分别是棱$AA_1$、棱$CC_1$上的点, 且$AR=2RA_1$, $C_1S=2SC$, 求证: $PS\\parallel RQ$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022053": { + "id": "022053", + "content": "已知正方体$ABCD-A_1B_1C_1D_1$的边长为$1$. 求:\\\\\n(1) $\\overrightarrow{AC} \\cdot \\overrightarrow{AA_1}$;\\\\\n(2) $\\overrightarrow{AC} \\cdot \\overrightarrow{A_1C_1}$;\\\\\n(3) $\\overrightarrow{AC} \\cdot \\overrightarrow{AC_1}$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022054": { + "id": "022054", + "content": "在长方体$ABCD-A' B' C' D'$中, $A' C'$和$B' D'$相交于$O'$, 求证$DO'\\parallel$平面$ACB'$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022055": { + "id": "022055", + "content": "在长方体$ABCD-A_1B_1C_1D_1$中, $G$是三角形$ACD_1$的重心. 求证: $3 \\overrightarrow{DG}=\\overrightarrow{DB_1}$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022056": { + "id": "022056", + "content": "在长方体$ABCD-A_1B_1C_1D_1$中, 已知$AB=6$, $AD=2$, $AA_1=1$, $P$是棱$AB$上的点且$PB=2AP$, $M$是棱$DC$上的点, 且$DM=2MC$, $N$是$B_1C_1$的中点, 求直线$PD_1$与$MN$所成的角$\\theta$的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022057": { + "id": "022057", + "content": "已知棱长为$1$的正四面体$A-BCD$中, $E$、$F$分别在$AB$、$CD$上, 且$\\overrightarrow{AE}=\\dfrac{1}{4} \\overrightarrow{AB}$, \n$\\overrightarrow{CF}=\\dfrac{1}{3} \\overrightarrow{CD}$.\\\\\n(1) 求直线$DE$和$BF$所成的角的大小;\\\\\n(2) 求$|\\overrightarrow{EF}|$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022058": { + "id": "022058", + "content": "已知长方体$ABCD-A_1B_1C_1D_1$的高为$h$, 上、下底面是边长为$a$的正方形, 坐标原点$O$设在下底面的中心, $x$轴、$y$轴分别与下底面的对角线重合, $z$轴垂直于底面(如图). 写出下列点的坐标以及向量的坐标:\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\def\\m{2}\n\\def\\n{2.5}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below ] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\n\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\n\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\n\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1,0) node [right] {$z$} coordinate (z);\n\\end{tikzpicture}\n\\end{center}\n(1) $A$的坐标: \\blank{50}; (2) $D$的坐标: \\blank{50}; (3) $B_1$的坐标: \\blank{50};\\\\\n(4) $\\overrightarrow{OA}$的坐标: \\blank{50}; (5) $\\overrightarrow{D_1A_1}$的坐标: \\blank{50}; (6) $\\overrightarrow{B_1D}$的坐标: \\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022059": { + "id": "022059", + "content": "已知$\\overrightarrow {a}=(1,-5,4)$, $\\overrightarrow {b}=(2,1,7)$.\\\\\n(1) 求$3 \\overrightarrow {a}+2 \\overrightarrow {b}$的坐标;\\\\\n(2) 求$|\\overrightarrow {a}+\\overrightarrow {b}|$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022060": { + "id": "022060", + "content": "已知$\\overrightarrow {a}=(2,1,-2)$, $\\overrightarrow {b}=(5,-4,3)$, $\\overrightarrow {c}=(-8,4,1)$.\\\\\n(1) 求证: $\\overrightarrow {a} \\perp \\overrightarrow {b}$;;\n(2) 设$\\overrightarrow {a}$与$\\overrightarrow {c}$的夹角为$\\theta$, 求$\\cos \\theta$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022061": { + "id": "022061", + "content": "已知$P_1(2,5,4)$, $P_2(6,4,7)$, 设$\\overrightarrow {a}=\\overrightarrow{P_1P_2}$, 求$\\overrightarrow {a}$、$-\\overrightarrow {a}$和单位向量$\\overrightarrow{a_0}$的坐标.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022062": { + "id": "022062", + "content": "已知$P_1(2,5,-6)$, 在$y$轴上求一点$P_2$, 使$|P_1P_2|=7$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022063": { + "id": "022063", + "content": "已知$P_1(1,2,3), P_2(5,4,7)$, 在$y$轴上求一点$Q$, 使$|P_1Q|=|P_2Q|$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022064": { + "id": "022064", + "content": "已知向量$\\overrightarrow {a}=(1,-3,2)$, $\\overrightarrow {b}=(2,0,-8)$, 求单位向量$\\overrightarrow {c}$, 使$\\overrightarrow {c}$与向量$\\overrightarrow {a}$、$\\overrightarrow {b}$都垂直.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022065": { + "id": "022065", + "content": "已知平面$\\alpha$经过点$A(3,1,-1)$、$B(1,-1,0)$, 且平行于向量$\\overrightarrow {a}=(-1,0,2)$, 求平面$\\alpha$的一个法向量.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022066": { + "id": "022066", + "content": "已知点$A$、$B$、$C$的坐标分别为$(x_1, y_1, z_1)$、$(x_2, y_2, z_2)$、$(x_3, y_3, z_3)$, $G$是$\\triangle ABC$的重心, 求点$G$的坐标.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022067": { + "id": "022067", + "content": "已知正方体$ABCD-A_1B_1C_1D_1$, 求证: $BD_1 \\perp C_1D$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022068": { + "id": "022068", + "content": "正三棱柱$ABC-A_1B_1C_1$中, $AB=2AA_1=\\dfrac{\\sqrt{6}}{2}$.\\\\\n(1) $P$点在棱$A_1B_1$上什么位置时, 异面直线$AP$与$A_1C$互相垂直?\\\\\n(2) $P$点在棱$A_1B_1$上什么位置时, 直线$AP$与平面$A_1BC$成$30^{\\circ}$角?", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022069": { + "id": "022069", + "content": "如图, 平面$ABEF \\perp$平面$ABCD$, 四边形$ABEF$与$ABCD$都是直角梯形, \n$\\angle BAD=\\angle FAB=90^{\\circ}$, $BC =\\dfrac 12 AD$且$BC\\parallel AD$, $BE = \\dfrac{1}{2} AF$且$BE\\parallel AF$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [above right] {$A$} coordinate (A);\n\\draw (3,0,0) node [right] {$D$} coordinate (D);\n\\draw (0,3,0) node [above] {$F$} coordinate (F);\n\\draw (0,0,1.5) node [below] {$B$} coordinate (B);\n\\draw (B) ++ (1.5,0,0) node [below] {$C$} coordinate (C);\n\\draw (B) ++ (0,1.5,0) node [left] {$E$} coordinate (E);\n\\draw (B)--(C)--(D)--(F)--(E)--cycle(E)--(C);\n\\draw [dashed] (A)--(D)(A)--(F)(A)--(B);\n\\end{tikzpicture}\n\\end{center}\n(1) 证明: $C, D, F, E$四点共面;\\\\\n(2) 设$AB=BC=BE$, 求二面角$A-ED-B$的大小;", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022070": { + "id": "022070", + "content": "如图, 已知四棱锥$P-ABCD$的底面$ABCD$为等腰梯形, $AB\\parallel DC$, $AC \\perp BD$, $AC$与$BD$相交于点$O$, 且顶点$P$在底面上的射影恰为$O$点, 又$BO=2$, $PO=\\sqrt{2}$, $PB \\perp PD$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$O$} coordinate (O);\n\\draw (-2,0,2) node [left] {$A$} coordinate (A);\n\\draw (2,0,2) node [right] {$B$} coordinate (B);\n\\draw ($(O)!-0.5!(B)$) node [left] {$D$} coordinate (D);\n\\draw ($(O)!-0.5!(A)$) node [right] {$C$} coordinate (C);\n\\draw (O) ++ (0,2,0) node [above] {$P$} coordinate (P);\n\\draw (A)--(B)--(C)--(P)--cycle(B)--(P);\n\\draw [dashed] (P)--(O)(P)--(D)--(B)(A)--(C)(A)--(D)--(C);\n\\draw (O) pic [draw, scale = 0.3] {right angle = B--O--A};\n\\end{tikzpicture}\n\\end{center}\n(1) 求异面直线$PD$与$BC$所成角的余弦值;\\\\\n(2) 求二面角$P-AB-C$的大小;\\\\\n(3) 设点$M$在棱$PC$上, 且$\\dfrac{PM}{MC}=\\lambda$, 问$\\lambda$为何值时, $PC \\perp$平面$BMD$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022071": { + "id": "022071", + "content": "已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系, 求下列直线的一个方向向量.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.6]\n\\def\\l{3}\n\\def\\m{3}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below ] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\n\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\n\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\n\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\n\\end{tikzpicture}\n\\end{center}\n(1) $AD_1$;\\\\\n(2) $AA_1$;\\\\\n(3) $AC_1$;\\\\\n(4) $AB_1$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022072": { + "id": "022072", + "content": "已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系. 下列向量是图中哪些经过两个顶点的直线的一个方向向量?\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.6]\n\\def\\l{3}\n\\def\\m{3}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below ] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\n\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\n\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\n\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\n\\end{tikzpicture}\n\\end{center}\n(1) $\\overrightarrow {a}=(1,0,0)$;\\\\\n(2) $\\overrightarrow {b}=(0,1,0)$;\\\\\n(3) $\\overrightarrow {c}=(3 \\sqrt{2}, 0,4)$;\\\\\n(4) $\\overrightarrow {d}=(0,3 \\sqrt{2}, 8)$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022073": { + "id": "022073", + "content": "已知长方体$ABCD-A_1B_1C_1D_1$的上、下底面都是边长为$3$的正方形, 长方体的高为$4$, 如图建立空间直角坐标系, 求下列平面的一个法向量.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.6]\n\\def\\l{3}\n\\def\\m{3}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below ] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw [dashed] (C)--(A)(D)--(B)($(A)!0.5!(C)$)--($(A1)!0.5!(C1)$);\n\\draw [->] (A) -- ($(A)!-0.5!(C)$) node [below] {$x$} coordinate (x);\n\\draw [->] (B) -- ($(B)!-0.5!(D)$) node [right] {$y$} coordinate (y);\n\\draw [->] ($(A1)!0.5!(C1)$) --++ (0,1.5,0) node [right] {$z$} coordinate (z);\n\\end{tikzpicture}\n\\end{center}\n(1) 平面$AA_1D_1D$;\\\\\n(2) 平面$BB_1D_1D$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022074": { + "id": "022074", + "content": "已知点$A(0,-7,0)$、$B(2,-1,1)$、$C(2,2,2)$, 求平面$ABC$的一个法向量.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022075": { + "id": "022075", + "content": "已知点$S(0,6,4)$、$A(3,5,3)$、$B(-2,11,-5)$、$C(1,-1,4)$, 求点$S$到平面$ABC$的距离.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022076": { + "id": "022076", + "content": "已知平面$\\alpha$的一个法向量$\\overrightarrow {n}=(3,-2,6)$, 且经过点$A(0,7,0)$, 求原点到平面$\\alpha$的距离.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022077": { + "id": "022077", + "content": "已知三棱锥$A-BCD$的三条侧棱$AB$、$AC$、$AD$两两垂直, 且$AB=1$, $AC=2$, $AD=3$, 求顶点$A$到平面$BCD$的距离.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022078": { + "id": "022078", + "content": "正三棱柱$ABC-A_1B_1C_1$中, $AB=2AA_1=\\dfrac{\\sqrt{6}}{2}$.\\\\\n(1) $P$点在棱$A_1B_1$上什么位置时, 异面直线$AP$与$A_1C$互相垂直?\\\\\n(2) $P$点在棱$A_1B_1$上什么位置时, 直线$AP$与平面$A_1BC$成$30^{\\circ}$角?", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022079": { + "id": "022079", + "content": "已知正方体$ABCD-A_1B_1C_1D_1$, 求二面角$B-AC-D_1$的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022080": { + "id": "022080", + "content": "已知$ABCD-A_1B_1C_1D_1$为正方体.\\\\\n(1) 求直线$AC$与$B_1D$所成的角的大小;\\\\\n(2) 求直线$B_1D$与平面$ACD_1$所成的角的大小;\\\\\n(3) 求平面$ACD_1$与平面$B_1CD_1$所成的二面角的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022081": { + "id": "022081", + "content": "已知正三棱锥的底面边长和高都为$a$. 求侧面与底面所成的二面角的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022082": { + "id": "022082", + "content": "在三棱锥$P-ABC$中, 已知底面$ABC$是以$C$为直角的直角三角形, $PC \\perp$平面$ABC$, $AC=18$, $PC=6$, $BC=9$, $G$是$\\triangle PAB$的重心, $M$是棱$AC$的中点, 求直线$CG$与直线$BM$所成的角$\\theta$的大小.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022083": { + "id": "022083", + "content": "已知矩形$ABCD$, 且$PD \\perp$平面$ABCD$, 若$PB=2$, $PB$与平面$PCD$所成的角为$45^{\\circ}$. $PB$与平面$ABD$所成的角为$30^{\\circ}$, 求:\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 1.3]\n\\draw (0,0,0) node [below] {$D$} coordinate (D);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (2,0,2) node [below] {$B$} coordinate (B);\n\\draw (0,0,2) node [left] {$A$} coordinate (A);\n\\draw (0,2,0) node [above] {$P$} coordinate (P);\n\\draw (A)--(B)--(C)--(P)--cycle(P)--(B);\n\\draw [dashed] (A)--(D)--(C)(B)--(D)--(P);\n\\end{tikzpicture}\n\\end{center}\n(1) $CD$的长;\\\\\n(2) 求$PB$与$CD$所成的角;\\\\\n(3) 求二面角$C-PB-D$的余弦值.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届空间向量校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022084": { + "id": "022084", + "content": "用二项式定理展开下列两式:\\\\\n(1) $(a+2 b)^6$;\\\\\n(2) $(1-\\dfrac{1}{x})^5$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022085": { + "id": "022085", + "content": "化简:\\\\ \n(1) $(1+\\sqrt{x})^5+(1-\\sqrt{x})^5$;\\\\\n(2) $(2 x+y)^4-(2 x-y)^4$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022086": { + "id": "022086", + "content": "分别写出$(x-1)^{15}$的二项展开式中的前$4$项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022087": { + "id": "022087", + "content": "求$(2 a^3-3 b^2)^{10}$的二项展开式中的第$8$项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022088": { + "id": "022088", + "content": "$(x-1)^n$的二项展开式中第$m$项($1 \\leq m \\leq n$且$m$、$n \\in \\mathbf{N}$)的二项式的系数是\\bracket{20}.\n\\fourch{$\\mathrm{C}_n^{m-1}$}{$(-1)^{m-1} \\mathrm{C}_n^m$}{$\\mathrm{C}_n^m$}{$(-1)^m \\mathrm{C}_n^m$}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022089": { + "id": "022089", + "content": "求$(3 x^3-\\dfrac{1}{3 x^3})^{10}$的二项展开式中的常数项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022090": { + "id": "022090", + "content": "已知$(1+x)^n$的二项展开式中第$4$项与第$8$项的系数相等, 求这两项的系数.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022091": { + "id": "022091", + "content": "在$(\\sqrt[3]{x}-\\dfrac{2}{\\sqrt{x}})^{11}$的二项展开式中,\\\\\n(1) 求含$x^2$项的二项式系数;\\\\\n(2) 含$x^{\\frac{1}{3}}$的项是第几项? 并写出这项的系数.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022092": { + "id": "022092", + "content": "已知$(x \\sin \\theta+1)^6$的二项展开式$x^2$项的系数与$(x-\\dfrac{15}{2} \\cos \\theta)^4$的二项展开式中$x^3$项的系数相等, 求$\\cos \\theta$的值.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022093": { + "id": "022093", + "content": "求证: 当$n$为正整数时, $2^n-\\mathrm{C}_n^1 \\cdot 2^{n-1}+\\mathrm{C}_n^2 \\cdot 2^{n-2}+\\cdots+\\mathrm{C}_n^{n-1} \\cdot 2+(-1)^n=1$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022094": { + "id": "022094", + "content": "求$(1+2 x)^3(1-x)^4$展开式中$x^6$的系数.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022095": { + "id": "022095", + "content": "在$(3 x-2 y)^9$的展开式中, 二项式系数的和是\\blank{50}, 各项系数的和是各项系数的绝对值之和是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022096": { + "id": "022096", + "content": "$\\mathrm{C}_n^1+3\\mathrm{C}_n^2+9\\mathrm{C}_n^3+\\cdots+3^{n-1} \\mathrm{C}_n^n$等于\\bracket{20}.\n\\fourch{$4^n$}{$\\dfrac{4^n}{3}$}{$\\dfrac{4^n}{3}-1$}{$\\dfrac{4^n-1}{3}$}", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022097": { + "id": "022097", + "content": "求$(\\dfrac{\\sqrt{x}}{2}-\\dfrac{2}{\\sqrt{x}})^{10}$的二项展开式的正中间一项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022098": { + "id": "022098", + "content": "求$(x \\sqrt{y}-y \\sqrt{x})^{11}$的二项展开式的正中间两项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022099": { + "id": "022099", + "content": "用二项式定理证明: $99^{10}-1$能被$1000$整除.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022100": { + "id": "022100", + "content": "求$77^{77}-15$除以$19$的余数.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022101": { + "id": "022101", + "content": "求$(1+2 x+x^2)^{10}(1-x)^6$的展开式中各项系数之和.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022102": { + "id": "022102", + "content": "在$(x^2-\\dfrac{3}{x})^n$的二项展开式中, 有且只有第五项的二项式系数最大, 求:\n$\\mathrm{C}_n^0-\\dfrac{1}{2} \\mathrm{C}_n^1+\\dfrac{1}{4} \\mathrm{C}_n^2-\\cdots+(-1)^n \\cdot \\dfrac{1}{2^n} \\mathrm{C}_n^n$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022103": { + "id": "022103", + "content": "在$(1+3 x)^n$的二项展开式中, 末三项的二项式系数之和等于$631$.\\\\\n(1) 求二项展开式中二项式系数最大的项;\\\\\n(2) 求二项展开式中系数最大的项.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022104": { + "id": "022104", + "content": "已知$(x+1)^n=x^n+\\cdots+a x^3+b x^2+c x+1$($n \\geq 1$, $n \\in \\mathrm{N}$), 且$a: b=3: 1$, 求$c$的值.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, + "022105": { + "id": "022105", + "content": "已知$n$为大于$1$的自然数, 用二项式定理证明: $(1+\\dfrac{1}{n})^n>2$.", + "objs": [], + "tags": [], + "genre": "", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "2024届二项式定理校本作业", + "edit": [ + "20230319\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "" + }, "030001": { "id": "030001", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0