From d55a878936e697a317a4c6fe1c12c02404034048 Mon Sep 17 00:00:00 2001 From: wangweiye7840 Date: Mon, 8 Jan 2024 11:19:58 +0800 Subject: [PATCH] =?UTF-8?q?=E5=BD=95=E5=85=A526=E5=B1=8A=E9=AB=98=E4=B8=80?= =?UTF-8?q?=E5=AF=92=E5=81=87=E4=BD=9C=E4=B8=9A6=E5=B9=B6=E5=BB=BA?= =?UTF-8?q?=E7=AB=8Brelated?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 题库0.3/Problems.json | 415 +++++++++++++++++++++++++++++++++++++++++- 1 file changed, 409 insertions(+), 6 deletions(-) diff --git a/题库0.3/Problems.json b/题库0.3/Problems.json index 3a9a97cd..8f370586 100644 --- a/题库0.3/Problems.json +++ b/题库0.3/Problems.json @@ -87855,7 +87855,9 @@ "20220701\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023475" + ], "remark": "", "space": "4em", "unrelated": [] @@ -88867,7 +88869,9 @@ "20220701\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023468" + ], "remark": "", "space": "", "unrelated": [] @@ -161186,7 +161190,9 @@ "20220720\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023467" + ], "remark": "", "space": "4em", "unrelated": [] @@ -434447,7 +434453,9 @@ "20230503\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023475" + ], "remark": "", "space": "", "unrelated": [] @@ -546144,7 +546152,9 @@ "20221231\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023479" + ], "remark": "", "space": "", "unrelated": [] @@ -548407,7 +548417,9 @@ "20221231\t王伟叶" ], "same": [], - "related": [], + "related": [ + "023476" + ], "remark": "", "space": "", "unrelated": [] @@ -627020,6 +627032,397 @@ "space": "4em", "unrelated": [] }, + "023463": { + "id": "023463", + "content": "若函数 $y=x^2-x+3$ 的定义域为 $(0,+\\infty)$, 则它的值域是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023464": { + "id": "023464", + "content": "函数 $y=3^x+\\ln (1+x)$ 的近似零点为\\blank{50}(精确到$0.01$).", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023465": { + "id": "023465", + "content": "$f(x)=x^2+x+1$, $g(x)=x^2+1$, 则 $y=2 g(x)-f(x)$ 的最小值是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023466": { + "id": "023466", + "content": "若函数 $y=x^2-3 x-4$ 的定义域为 $[0, m]$, 值域为 $[-\\dfrac{25}{4},-4]$, 则 $m$ 的取值范围是\\blank{50}.", + "objs": [], + "tags": [], + "genre": "填空题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023467": { + "id": "023467", + "content": "若函数 $f(x)$ 的定义域是 $[0,1]$, 则 $f(x+a)+f(x-a)$($00$}{$f(x)-f(-x) \\leq 0$}{$f(x) \\cdot f(-x) \\leq 0$}{$f(x) \\cdot f(-x)>0$}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023472": { + "id": "023472", + "content": "已知函数 $f(x), g(x)$ 定义在同一区间 $D$ 上, $f(x)$ 是增函数, $g(x)$ 是减函数, 且 $g(x) \\neq 0$, 则在 $D$ 上\\bracket{20}.\n\\twoch{$f(x)+g(x)$ 一定是减函数}{$f(x)-g(x)$ 一定是增函数}{$f(x) \\cdot g(x)$ 一定是增函数}{$\\dfrac{f(x)}{g(x)}$ 一定是减函数}", + "objs": [], + "tags": [], + "genre": "选择题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "", + "unrelated": [] + }, + "023473": { + "id": "023473", + "content": "某种奥运纪念品进货价 50 元/件, 据市场调查, 当销售价格 $x$ (元/件) 在 $x \\in[50,80]$ 时,每天售出件数 $p=\\dfrac{100000}{x-40}$, 若想每天获得的利润最大, 销售价格应定为多少元?", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023474": { + "id": "023474", + "content": "设 $x_1, x_2$ 是关于 $x$ 的一元二次方程 $x^2-2(m-1) x+m+1=0$ 的两个实根, 又 $y=x_1^2+x_2^2$.\\\\\n(1) 求 $y=f(m)$ 的解析式及此时函数的定义域;\\\\\n(2) 指出 $f(m)$ 的单调区间.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023475": { + "id": "023475", + "content": "设函数 $f(x)$ 是定义在 $\\mathrm{R}$ 上的偶函数, 并在区间 $(-\\infty, 0)$ 上是严格增函数, $f(2 a^2+a+1)0$ 时, $f(x)<0$, $f(1)=-2$.\\\\\n(1) 判断函数 $f(x)$ 的奇偶性;\\\\\n(2) 当 $x \\in[-3,3]$ 时, 函数 $f(x)$ 是否有最值?如果有, 求出最值; 如果没有, 请说明理由.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [ + "020543" + ], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023480": { + "id": "023480", + "content": "设 $[x]$ 表示不大于 $x$ 的最大整数, 解方程 $2 x-[x]=5$.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, + "023481": { + "id": "023481", + "content": "对于 $y=f(x)$ 是定义在 $(0,+\\infty)$ 上的函数, 若其满足: 对任意 $x>0$, 都成立 $f(x)=f(\\dfrac{1}{x})$, 就称 $y=f(x)$ 是``倒数对称''的.\\\\\n(1) 判断函数 $y=x-\\dfrac{1}{x}$ 与函数 $y=x^2+\\dfrac{1}{x^2}$ 是否是``倒数对称''的;\\\\\n(2) 若``倒数对称''的函数 $y=f(x)$ 在区间 $[1,2]$ 上是严格减函数, 判断它在区间 $[\\dfrac{1}{2}, 1]$ 上的单调性, 并说明理由;\\\\\n(3) 证明: 若 $y=f(x)$ 是``倒数对称''的函数, 则存在定义在 $[2,+\\infty)$ 上的函数 $y=g(x)$,使得对任意 $x \\in (0,+\\infty)$, 总成立 $f(x)=g(x+\\dfrac{1}{x})$.", + "objs": [], + "tags": [], + "genre": "解答题", + "ans": "", + "solution": "", + "duration": -1, + "usages": [], + "origin": "26届寒假作业补充题目", + "edit": [ + "20240108\t王伟叶" + ], + "same": [], + "related": [], + "remark": "", + "space": "4em", + "unrelated": [] + }, "030001": { "id": "030001", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0