20221219 afternoon

This commit is contained in:
WangWeiye 2022-12-19 20:10:14 +08:00
parent e1da5d61e9
commit d6bc31c962
11 changed files with 357 additions and 417 deletions

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -11,7 +11,7 @@
"0" "0"
] ]
}, },
"execution_count": 9, "execution_count": 1,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -19,7 +19,7 @@
"source": [ "source": [
"import os,re,json\n", "import os,re,json\n",
"\"\"\"这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭, 随后运行第二个代码块\"\"\"\n", "\"\"\"这里编辑题号(列表)后将在vscode中打开窗口, 编辑后保存关闭, 随后运行第二个代码块\"\"\"\n",
"problems = \"12576,12586\"\n", "problems = \"12642\"\n",
"\n", "\n",
"def generate_number_set(string,dict):\n", "def generate_number_set(string,dict):\n",
" string = re.sub(r\"[\\n\\s]\",\"\",string)\n", " string = re.sub(r\"[\\n\\s]\",\"\",string)\n",

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -11,7 +11,7 @@
"0" "0"
] ]
}, },
"execution_count": 6, "execution_count": 1,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -21,7 +21,7 @@
"\n", "\n",
"\"\"\"---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---\"\"\"\n", "\"\"\"---设置关键字, 同一field下不同选项为or关系, 同一字典中不同字段间为and关系, 不同字典间为or关系, _not表示列表中的关键字都不含, 同一字典中的数字用来供应同一字段不同的条件之间的and---\"\"\"\n",
"keywords_dict_table = [\n", "keywords_dict_table = [\n",
" {\"origin\":[\"2023\"],\"origin2\":[\"嘉定\"]}\n", " {\"origin\":[\"2023\"],\"origin2\":[\"青浦\"]}\n",
"]\n", "]\n",
"\"\"\"---关键字设置完毕---\"\"\"\n", "\"\"\"---关键字设置完毕---\"\"\"\n",
"# 示例: keywords_dict_table = [\n", "# 示例: keywords_dict_table = [\n",
@ -89,7 +89,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "mathdept", "display_name": "Python 3.9.15 ('pythontest')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -108,7 +108,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc" "hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
} }
} }
}, },

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -98,7 +98,199 @@
"2021届上海春季高考.tex\n", "2021届上海春季高考.tex\n",
"2022届上海春季高考.tex\n", "2022届上海春季高考.tex\n",
"2023届嘉定区一模.tex\n", "2023届嘉定区一模.tex\n",
"2023届宝山区一模.tex\n",
"012655\n",
"\n",
"\n",
"012656\n",
"\n",
"\n",
"012657\n",
"\n",
"\n",
"012658\n",
"\n",
"\n",
"012659\n",
"\n",
"\n",
"012660\n",
"\n",
"\n",
"012661\n",
"\n",
"\n",
"012662\n",
"\n",
"\n",
"012663\n",
"\n",
"\n",
"012664\n",
"\n",
"\n",
"012665\n",
"\n",
"\n",
"012666\n",
"\n",
"\n",
"012667\n",
"\n",
"\n",
"012668\n",
"\n",
"\n",
"012669\n",
"\n",
"\n",
"012670\n",
"\n",
"\n",
"012671\n",
"\n",
"\n",
"012672\n",
"\n",
"\n",
"012673\n",
"\n",
"\n",
"012674\n",
"\n",
"\n",
"012675\n",
"\n",
"\n",
"2023届崇明区一模.tex\n", "2023届崇明区一模.tex\n",
"2023届徐汇区一模.tex\n",
"012634\n",
"\n",
"\n",
"012635\n",
"\n",
"\n",
"012636\n",
"\n",
"\n",
"012637\n",
"\n",
"\n",
"012638\n",
"\n",
"\n",
"012639\n",
"\n",
"\n",
"012640\n",
"\n",
"\n",
"012641\n",
"\n",
"\n",
"012642\n",
"\n",
"\n",
"012643\n",
"\n",
"\n",
"012644\n",
"\n",
"\n",
"012645\n",
"\n",
"\n",
"012646\n",
"\n",
"\n",
"012647\n",
"\n",
"\n",
"012648\n",
"\n",
"\n",
"012649\n",
"\n",
"\n",
"012650\n",
"\n",
"\n",
"012651\n",
"\n",
"\n",
"012652\n",
"\n",
"\n",
"012653\n",
"\n",
"\n",
"012654\n",
"\n",
"\n",
"2023届普陀区一模.tex\n",
"012592\n",
"\n",
"\n",
"012593\n",
"\n",
"\n",
"012594\n",
"\n",
"\n",
"012595\n",
"\n",
"\n",
"012596\n",
"\n",
"\n",
"012597\n",
"\n",
"\n",
"012598\n",
"\n",
"\n",
"012599\n",
"\n",
"\n",
"012600\n",
"\n",
"\n",
"012601\n",
"\n",
"\n",
"012602\n",
"\n",
"\n",
"012603\n",
"\n",
"\n",
"012604\n",
"\n",
"\n",
"012605\n",
"\n",
"\n",
"012606\n",
"\n",
"\n",
"012607\n",
"\n",
"\n",
"012608\n",
"\n",
"\n",
"012609\n",
"\n",
"\n",
"012610\n",
"\n",
"\n",
"012611\n",
"\n",
"\n",
"012612\n",
"\n",
"\n",
"2023届杨浦区一模.tex\n", "2023届杨浦区一模.tex\n",
"2023届松江区一模.tex\n", "2023届松江区一模.tex\n",
"2023届长宁区一模.tex\n", "2023届长宁区一模.tex\n",
@ -143,7 +335,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "mathdept", "display_name": "Python 3.9.15 ('pythontest')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -162,7 +354,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc" "hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
} }
} }
}, },

View File

@ -2,76 +2,34 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"题号: 012613 , 字段: ans 中已有该数据: $\\{2,4\\}$\n", "题号: 012655 , 字段: ans 中已修改数据: $\\{2\\}$\n",
"题号: 012614 , 字段: ans 中已有该数据: $(1,2)$\n", "题号: 012656 , 字段: ans 中已修改数据: $(-1,1)$\n",
"题号: 012615 , 字段: ans 中已有该数据: $\\dfrac{\\sqrt{2}}2$\n", "题号: 012657 , 字段: ans 中已修改数据: $\\sqrt{5}$\n",
"题号: 012616 , 字段: ans 中已有该数据: $3$\n", "题号: 012658 , 字段: ans 中已修改数据: $5$\n",
"题号: 012617 , 字段: ans 中已有该数据: $3$\n", "题号: 012659 , 字段: ans 中已修改数据: $3$\n",
"题号: 012618 , 字段: ans 中已有该数据: \\textcircled{1}\\textcircled{4}\n", "题号: 012660 , 字段: ans 中已修改数据: $0.3$\n",
"题号: 012619 , 字段: ans 中已有该数据: $180$\n", "题号: 012661 , 字段: ans 中已修改数据: $\\dfrac{\\sqrt{3}}3\\pi$\n",
"题号: 012620 , 字段: ans 中已有该数据: $4$\n", "题号: 012662 , 字段: ans 中已修改数据: $2$\n",
"题号: 012621 , 字段: ans 中已有该数据: $\\dfrac 52$\n", "题号: 012663 , 字段: ans 中已修改数据: $96$\n",
"题号: 012622 , 字段: ans 中已有该数据: $\\dfrac\\pi 4$\n", "题号: 012664 , 字段: ans 中已修改数据: $\\dfrac 53$\n",
"题号: 012623 , 字段: ans 中已有该数据: $\\dfrac{8\\sqrt{2}\\pi}3$\n", "题号: 012665 , 字段: ans 中已修改数据: $60^\\circ$\n",
"题号: 012624 , 字段: ans 中已有该数据: $\\dfrac{8\\sqrt{3}}3$\n", "题号: 012666 , 字段: ans 中已修改数据: $2021$\n",
"题号: 012625 , 字段: ans 中已有该数据: A\n", "题号: 012667 , 字段: ans 中已修改数据: B\n",
"题号: 012626 , 字段: ans 中已有该数据: C\n", "题号: 012668 , 字段: ans 中已修改数据: A\n",
"题号: 012627 , 字段: ans 中已有该数据: D\n", "题号: 012669 , 字段: ans 中已修改数据: C\n",
"题号: 012628 , 字段: ans 中已有该数据: C\n", "题号: 012670 , 字段: ans 中已修改数据: B\n",
"题号: 012629 , 字段: ans 中已有该数据: (1) $b_n=3^{n-1}$; (2) $-8$\n", "题号: 012671 , 字段: ans 中已修改数据: (1) $[k\\pi-\\dfrac{5\\pi}{12},k\\pi+\\dfrac\\pi{12}]$, $k\\in \\mathbf{Z}$; (2) $\\sqrt{13}$或$\\sqrt{61}$\n",
"题号: 012630 , 字段: ans 中已有该数据: (1) $\\dfrac \\pi 4$; (2) $1$\n", "题号: 012672 , 字段: ans 中已修改数据: (1) 证明略; (2) $a_n=3^n-2$; (3) $a_1+a_3+a_5+a_7+a_9=22133$\n",
"题号: 012631 , 字段: ans 中已有该数据: (1) 证明略; (2) 证明略; (3) $\\dfrac\\pi 4$\n", "题号: 012673 , 字段: ans 中已修改数据: (1) 证明略; (2) $\\arccos \\dfrac{\\sqrt{10}}{10}$; (3) $\\dfrac 13$\n",
"题号: 012632 , 字段: ans 中已有该数据: (1) $\\sqrt{2}$; (2) $y=x+1$; (3) 过定点$(-3,0)$和$(1,0)$\n", "题号: 012674 , 字段: ans 中已修改数据: (1) $\\dfrac{x^2}{12}+\\dfrac{y^2}4=1$; (2) $3+2\\sqrt{3}$; (3) 存在, $m$的取值范围为$[-\\dfrac{\\sqrt{3}}3,0)$\n",
"题号: 012633 , 字段: ans 中已有该数据: (1) $y=x-1$; (2) 单调减区间为$(\\dfrac 12 1)$; 极小值为$-2$; (3) 证明略\n", "题号: 012675 , 字段: ans 中已修改数据: (1) 当$a=0$时, $f(x)$是偶函数; 当$a\\ne 0$时, $f(x)$既不是奇函数又不是偶函数; (2) $(-1,\\dfrac 5{27})$; (3) $[2\\ln 2-2,1]$\n"
"题号: 012571 , 字段: ans 中已有该数据: $\\{1\\}$\n",
"题号: 012572 , 字段: ans 中已有该数据: $-1$\n",
"题号: 012573 , 字段: ans 中已有该数据: $\\dfrac\\pi 6$\n",
"题号: 012574 , 字段: ans 中已有该数据: $2$\n",
"题号: 012575 , 字段: ans 中已有该数据: $16\\pi$\n",
"题号: 012576 , 字段: ans 中已有该数据: $2800$, $31$\n",
"题号: 012577 , 字段: ans 中已有该数据: $2$\n",
"题号: 012578 , 字段: ans 中已有该数据: $(-\\infty,1)\\cup (1,3]$\n",
"题号: 012579 , 字段: ans 中已有该数据: $5$\n",
"题号: 012580 , 字段: ans 中已有该数据: $[\\dfrac 32,2]$\n",
"题号: 012581 , 字段: ans 中已有该数据: $(\\dfrac 72,0,\\dfrac 72)$\n",
"题号: 012582 , 字段: ans 中已有该数据: $\\dfrac{\\sqrt{3}}{20}v$\n",
"题号: 012583 , 字段: ans 中已有该数据: A\n",
"题号: 012584 , 字段: ans 中已有该数据: D\n",
"题号: 012585 , 字段: ans 中已有该数据: C\n",
"题号: 012586 , 字段: ans 中已有该数据: C\n",
"题号: 012587 , 字段: ans 中已有该数据: (1) 证明略; (2) $\\dfrac{3\\sqrt{22}}{11}$\n",
"题号: 012588 , 字段: ans 中已有该数据: (1) $\\dfrac 12$; (2) $a_n=\\dfrac{18}{2n+1}$\n",
"题号: 012589 , 字段: ans 中已有该数据: (1) 例如: 非通勤时段的车辆使用情况; 油价和电价的变化; 工作单位能否提供免费充电; 电动车的国家减免政策的变化; 车辆的外观、内饰与品牌效应; 车牌费用等; (2) 解答略\n",
"题号: 012590 , 字段: ans 中已有该数据: (1) $\\dfrac{x^2}4+\\dfrac{y^2}3=1$($y\\le 0$); (2) $P(-\\dfrac 32,\\dfrac{\\sqrt{3}}2)$, $Q(\\dfrac 32, \\dfrac{\\sqrt{3}}2)$; (3) $[\\sqrt{3}-1,\\sqrt{2}+1]$\n",
"题号: 012591 , 字段: ans 中已有该数据: (1) 导数为$y'=\\dfrac{1-\\ln x}{x^2}$, 单调性证明略; (2) 判断$89^{99}>99^{89}$, 证明略, 推广可以是:``对于实数$a,b$, 若$\\mathrm{e}<a<b$, 则$a^b>b^a$; (3) 证明略\n",
"题号: 010965 , 字段: ans 中已修改数据: $[0,2]$\n",
"题号: 010966 , 字段: ans 中已修改数据: $(-\\infty,0)$\n",
"题号: 030023 , 字段: ans 中已修改数据: $\\dfrac{3n^2-5n}2$\n",
"题号: 010968 , 字段: ans 中已修改数据: $\\dfrac{8\\pi}3$\n",
"题号: 010969 , 字段: ans 中已修改数据: $2(x+2)-(y-1)=0$\n",
"题号: 010970 , 字段: ans 中已修改数据: $\\dfrac 32$\n",
"题号: 030025 , 字段: ans 中已修改数据: $[0,\\dfrac 34]$\n",
"题号: 010972 , 字段: ans 中已修改数据: $25$\n",
"题号: 030024 , 字段: ans 中已修改数据: $\\dfrac 23(\\dfrac 1{4^n}-1)$\n",
"题号: 010974 , 字段: ans 中已修改数据: $[1,+\\infty)$\n",
"题号: 010975 , 字段: ans 中已修改数据: $\\sqrt{3}$\n",
"题号: 010976 , 字段: ans 中已修改数据: $3-\\sqrt{3}$\n",
"题号: 010977 , 字段: ans 中已修改数据: B\n",
"题号: 002745 , 字段: ans 中已修改数据: C\n",
"题号: 010979 , 字段: ans 中已修改数据: C\n",
"题号: 010980 , 字段: ans 中已修改数据: B\n",
"题号: 010981 , 字段: ans 中已修改数据: (1) $\\dfrac 23$; (2) $\\arctan {2\\sqrt{5}}5$\n",
"题号: 010982 , 字段: ans 中已修改数据: (1) $\\log_2 3$; (2) $a=2b\\ne 0$\n",
"题号: 010983 , 字段: ans 中已修改数据: (1) $\\sqrt{7}$千米; (2) 有$\\dfrac{8-\\sqrt{15}}7$小时, 两人不能通话\n",
"题号: 010984 , 字段: ans 中已修改数据: (1) $y^2=4\\sqrt{5} x$或$y^2=-4\\sqrt{5} x$; (2) $M$的坐标为$(0,0)$或$(-\\dfrac{4\\sqrt{5}}5,0)$; (3) 证明略\n",
"题号: 010985 , 字段: ans 中已修改数据: (1) $\\{-6,-3,-2,-1,0,1,2,3,4\\}$; (2) 证明略; (3) 元素个数为$\\dfrac 12 n(n+1)$; 元素之和为$\\dfrac{n+1}2(3^{n+1}-3)$\n"
] ]
} }
], ],
@ -169,7 +127,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "mathdept", "display_name": "Python 3.9.15 ('pythontest')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -188,7 +146,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc" "hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
} }
} }
}, },

View File

@ -1,192 +1,64 @@
ans ans
012613 012655
$\{2,4\}$ $\{2\}$
012614 012656
$(1,2)$ $(-1,1)$
012615 012657
$\dfrac{\sqrt{2}}2$ $\sqrt{5}$
012616 012658
$3$
012617
$3$
012618
\textcircled{1}\textcircled{4}
012619
$180$
012620
$4$
012621
$\dfrac 52$
012622
$\dfrac\pi 4$
012623
$\dfrac{8\sqrt{2}\pi}3$
012624
$\dfrac{8\sqrt{3}}3$
012625
A
012626
C
012627
D
012628
C
012629
(1) $b_n=3^{n-1}$; (2) $-8$
012630
(1) $\dfrac \pi 4$; (2) $1$
012631
(1) 证明略; (2) 证明略; (3) $\dfrac\pi 4$
012632
(1) $\sqrt{2}$; (2) $y=x+1$; (3) 过定点$(-3,0)$和$(1,0)$
012633
(1) $y=x-1$; (2) 单调减区间为$(\dfrac 12 1)$; 极小值为$-2$; (3) 证明略
012571
$\{1\}$
012572
$-1$
012573
$\dfrac\pi 6$
012574
$2$
012575
$16\pi$
012576
$2800$, $31$
012577
$2$
012578
$(-\infty,1)\cup (1,3]$
012579
$5$ $5$
012580 012659
$[\dfrac 32,2]$ $3$
012581 012660
$(\dfrac 72,0,\dfrac 72)$ $0.3$
012582 012661
$\dfrac{\sqrt{3}}{20}v$ $\dfrac{\sqrt{3}}3\pi$
012583 012662
$2$
012663
$96$
012664
$\dfrac 53$
012665
$60^\circ$
012666
$2021$
012667
B
012668
A A
012584 012669
D
012585
C C
012586 012670
C
012587
(1) 证明略; (2) $\dfrac{3\sqrt{22}}{11}$
012588
(1) $\dfrac 12$; (2) $a_n=\dfrac{18}{2n+1}$
012589
(1) 例如: 非通勤时段的车辆使用情况; 油价和电价的变化; 工作单位能否提供免费充电; 电动车的国家减免政策的变化; 车辆的外观、内饰与品牌效应; 车牌费用等; (2) 解答略
012590
(1) $\dfrac{x^2}4+\dfrac{y^2}3=1$($y\le 0$); (2) $P(-\dfrac 32,\dfrac{\sqrt{3}}2)$, $Q(\dfrac 32, \dfrac{\sqrt{3}}2)$; (3) $[\sqrt{3}-1,\sqrt{2}+1]$
012591
(1) 导数为$y'=\dfrac{1-\ln x}{x^2}$, 单调性证明略; (2) 判断$89^{99}>99^{89}$, 证明略, 推广可以是:``对于实数$a,b$, 若$\mathrm{e}<a<b$, 则$a^b>b^a$; (3) 证明略
010965
$[0,2]$
010966
$(-\infty,0)$
030023
$\dfrac{3n^2-5n}2$
010968
$\dfrac{8\pi}3$
010969
$2(x+2)-(y-1)=0$
010970
$\dfrac 32$
030025
$[0,\dfrac 34]$
010972
$25$
030024
$\dfrac 23(\dfrac 1{4^n}-1)$
010974
$[1,+\infty)$
010975
$\sqrt{3}$
010976
$3-\sqrt{3}$
010977
B B
002745 012671
C (1) $[k\pi-\dfrac{5\pi}{12},k\pi+\dfrac\pi{12}]$, $k\in \mathbf{Z}$; (2) $\sqrt{13}$或$\sqrt{61}$
010979 012672
C (1) 证明略; (2) $a_n=3^n-2$; (3) $a_1+a_3+a_5+a_7+a_9=22133$
010980 012673
B (1) 证明略; (2) $\arccos \dfrac{\sqrt{10}}{10}$; (3) $\dfrac 13$
010981 012674
(1) $\dfrac 23$; (2) $\arctan {2\sqrt{5}}5$ (1) $\dfrac{x^2}{12}+\dfrac{y^2}4=1$; (2) $3+2\sqrt{3}$; (3) 存在, $m$的取值范围为$[-\dfrac{\sqrt{3}}3,0)$
010982 012675
(1) $\log_2 3$; (2) $a=2b\ne 0$ (1) 当$a=0$时, $f(x)$是偶函数; 当$a\ne 0$时, $f(x)$既不是奇函数又不是偶函数; (2) $(-1,\dfrac 5{27})$; (3) $[2\ln 2-2,1]$
010983
(1) $\sqrt{7}$千米; (2) 有$\dfrac{8-\sqrt{15}}7$小时, 两人不能通话
010984
(1) $y^2=4\sqrt{5} x$或$y^2=-4\sqrt{5} x$; (2) $M$的坐标为$(0,0)$或$(-\dfrac{4\sqrt{5}}5,0)$; (3) 证明略
010985
(1) $\{-6,-3,-2,-1,0,1,2,3,4\}$; (2) 证明略; (3) 元素个数为$\dfrac 12 n(n+1)$; 元素之和为$\dfrac{n+1}2(3^{n+1}-3)$

View File

@ -1 +1 @@
012571,012572,012573,012574,012575,012576,012577,012578,012579,012580,012581,012582,012583,012584,012585,012586,012587,012588,012589,012590,012591 012529,012530,012531,012532,012533,012534,012535,012536,012537,012538,012539,012540,012541,012542,012543,012544,012545,012546,012547,012548,012549

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {

View File

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -15,9 +15,9 @@
"题块 2 处理完毕.\n", "题块 2 处理完毕.\n",
"正在处理题块 3 .\n", "正在处理题块 3 .\n",
"题块 3 处理完毕.\n", "题块 3 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/2023届嘉定区一模_教师_20221217.tex\n", "开始编译教师版本pdf文件: 临时文件/2023届青浦区一模_教师_20221219.tex\n",
"0\n", "0\n",
"开始编译学生版本pdf文件: 临时文件/2023届嘉定区一模_学生_20221217.tex\n", "开始编译学生版本pdf文件: 临时文件/2023届青浦区一模_学生_20221219.tex\n",
"0\n" "0\n"
] ]
} }
@ -41,7 +41,7 @@
"# enumi_mode = 0\n", "# enumi_mode = 0\n",
"\n", "\n",
"#2023届测验卷与周末卷\n", "#2023届测验卷与周末卷\n",
"exec_list = [(\"标题替换\",\"2023届嘉定区一模\")]\n", "exec_list = [(\"标题替换\",\"2023届青浦区一模\")]\n",
"enumi_mode = 1\n", "enumi_mode = 1\n",
"\n", "\n",
"# 日常选题讲义\n", "# 日常选题讲义\n",
@ -51,13 +51,15 @@
"\"\"\"---其他预处理替换命令结束---\"\"\"\n", "\"\"\"---其他预处理替换命令结束---\"\"\"\n",
"\n", "\n",
"\"\"\"---设置目标文件名---\"\"\"\n", "\"\"\"---设置目标文件名---\"\"\"\n",
"destination_file = \"临时文件/2023届嘉定区一模\"\n", "destination_file = \"临时文件/2023届青浦区一模\"\n",
"\"\"\"---设置目标文件名结束---\"\"\"\n", "\"\"\"---设置目标文件名结束---\"\"\"\n",
"\n", "\n",
"\n", "\n",
"\"\"\"---设置题号数据---\"\"\"\n", "\"\"\"---设置题号数据---\"\"\"\n",
"problems = [\n", "problems = [\n",
"\"012571,012572,012573,012574,012575,012576,012577,012578,012579,012580,012581,012582\",\"012583,012584,012585,012586\",\"012587,012588,012589,012590,012591\"\n", "\"012529,012530,012531,012532,012533,012534,012535,012536,012537,012538,012539,012540\",\"012541,012542,012543,012544\",\"012545,012546,012547,012548,012549\"\n",
"\n",
"\n",
"]\n", "]\n",
"\"\"\"---设置题号数据结束---\"\"\"\n", "\"\"\"---设置题号数据结束---\"\"\"\n",
"\n", "\n",
@ -208,7 +210,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "mathdept", "display_name": "Python 3.9.15 ('pythontest')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -227,7 +229,7 @@
"orig_nbformat": 4, "orig_nbformat": 4,
"vscode": { "vscode": {
"interpreter": { "interpreter": {
"hash": "ff3c292c316ba85de6f1ad75f19c731e79d694e741b6f515ec18f14996fe48dc" "hash": "91219a98e0e9be72efb992f647fe78b593124968b75db0b865552d6787c8db93"
} }
} }
}, },

View File

@ -2,118 +2,34 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"012550 填空题\n", "012655 填空题\n",
"012551 填空题\n", "012656 填空题\n",
"012552 填空题\n", "012657 填空题\n",
"012553 填空题\n", "012658 填空题\n",
"012554 填空题\n", "012659 填空题\n",
"012555 填空题\n", "012660 填空题\n",
"012556 填空题\n", "012661 填空题\n",
"012557 填空题\n", "012662 填空题\n",
"012558 填空题\n", "012663 填空题\n",
"012559 填空题\n", "012664 填空题\n",
"012560 填空题\n", "012665 填空题\n",
"012561 填空题\n", "012666 填空题\n",
"012562 选择题\n", "012667 选择题\n",
"012563 选择题\n", "012668 选择题\n",
"012564 解答题\n", "012669 选择题\n",
"012565 选择题\n", "012670 选择题\n",
"012566 解答题\n", "012671 解答题\n",
"012567 解答题\n", "012672 解答题\n",
"012568 解答题\n", "012673 解答题\n",
"012569 解答题\n", "012674 解答题\n",
"012570 解答题\n", "012675 解答题\n"
"012571 填空题\n",
"012572 填空题\n",
"012573 填空题\n",
"012574 填空题\n",
"012575 填空题\n",
"012576 填空题\n",
"012577 填空题\n",
"012578 填空题\n",
"012579 填空题\n",
"012580 填空题\n",
"012581 填空题\n",
"012582 填空题\n",
"012583 选择题\n",
"012584 选择题\n",
"012585 选择题\n",
"012586 解答题\n",
"012587 解答题\n",
"012588 解答题\n",
"012589 解答题\n",
"012590 解答题\n",
"012591 解答题\n",
"012592 填空题\n",
"012593 填空题\n",
"012594 填空题\n",
"012595 填空题\n",
"012596 填空题\n",
"012597 填空题\n",
"012598 填空题\n",
"012599 填空题\n",
"012600 填空题\n",
"012601 填空题\n",
"012602 填空题\n",
"012603 填空题\n",
"012604 选择题\n",
"012605 选择题\n",
"012606 选择题\n",
"012607 选择题\n",
"012608 解答题\n",
"012609 解答题\n",
"012610 解答题\n",
"012611 解答题\n",
"012612 解答题\n",
"012613 填空题\n",
"012614 填空题\n",
"012615 填空题\n",
"012616 填空题\n",
"012617 填空题\n",
"012618 填空题\n",
"012619 填空题\n",
"012620 填空题\n",
"012621 填空题\n",
"012622 填空题\n",
"012623 填空题\n",
"012624 填空题\n",
"012625 选择题\n",
"012626 填空题\n",
"012627 选择题\n",
"012628 选择题\n",
"012629 解答题\n",
"012630 解答题\n",
"012631 解答题\n",
"012632 解答题\n",
"012633 解答题\n",
"012634 填空题\n",
"012635 填空题\n",
"012636 填空题\n",
"012637 填空题\n",
"012638 填空题\n",
"012639 填空题\n",
"012640 填空题\n",
"012641 填空题\n",
"012642 填空题\n",
"012643 填空题\n",
"012644 填空题\n",
"012645 填空题\n",
"012646 选择题\n",
"012647 选择题\n",
"012648 选择题\n",
"012649 选择题\n",
"012650 解答题\n",
"012651 解答题\n",
"012652 解答题\n",
"012653 解答题\n",
"012654 解答题\n"
] ]
} }
], ],

View File

@ -2,16 +2,16 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"开始编译教师版本pdf文件: 临时文件/2019余_教师用_20221218.tex\n", "开始编译教师版本pdf文件: 临时文件/2019余_教师用_20221219.tex\n",
"0\n", "0\n",
"开始编译学生版本pdf文件: 临时文件/2019余_学生用_20221218.tex\n", "开始编译学生版本pdf文件: 临时文件/2019余_学生用_20221219.tex\n",
"0\n" "0\n"
] ]
} }
@ -26,7 +26,7 @@
"\"\"\"---设置题目列表---\"\"\"\n", "\"\"\"---设置题目列表---\"\"\"\n",
"#留空为编译全题库, a为读取临时文件中的题号筛选.txt文件生成题库\n", "#留空为编译全题库, a为读取临时文件中的题号筛选.txt文件生成题库\n",
"problems = r\"\"\"\n", "problems = r\"\"\"\n",
"012204,012206,012221,012222,012223\n", "12308:12319,12320:12323,12324:12328\n",
"\n", "\n",
"\"\"\"\n", "\"\"\"\n",
"\"\"\"---设置题目列表结束---\"\"\"\n", "\"\"\"---设置题目列表结束---\"\"\"\n",

View File

@ -311517,7 +311517,7 @@
}, },
"012642": { "012642": {
"id": "012642", "id": "012642",
"content": "某中学从甲、乙两个班中各选出$15$名学生参加知识竞赛, 将他们的成绩(满分$100$分)进行统计分析, 绘制成如图所示的茎叶图. 设成绩在$88$分以上(含$88$分)的学生为优秀学生, 现从甲、乙两班的优秀学生中各取$1$人, 记甲班选取的学生成绩不低于乙班选取得学生成绩记为事件$A$, 则事件$A$发生的概率$P(A)=$\\blank{50}.\n\\begin{center}\n\\begin{tabular}{r|c|l}\n甲 & & 乙\\\\\n& 5 & 8\\\\\n8\\ 0& 6 & 6\\ 9\\\\\n9 \\ 8 \\ 5 & 7 & 0 \\ 5 \\ 6 \\ 6 \\ 6 \\ 8 \\ 8\\\\\n8 \\ 7 \\ 6 \\ 4 \\ 1 & 8 & 6 \\ 6 \\\\\n8 \\ 6 \\ 2 \\ 2 \\ 1 & 9 & 5 \\ 8 \\ 8\n\\end{tabular}\n\\end{center}", "content": "某中学从甲、乙两个班中各选出$15$名学生参加知识竞赛, 将他们的成绩(满分$100$分)进行统计分析, 绘制成如图所示的茎叶图. 设成绩在$88$分以上(含$88$分)的学生为优秀学生, 现从甲、乙两班的优秀学生中各取$1$人, 记甲班选取的学生成绩不低于乙班选取得学生成绩记为事件$A$, 则事件$A$发生的概率$P(A)=$\\blank{50}.\n\\begin{center}\n\\begin{tabular}{r|c|l}\n甲 & & 乙\\\\\n& 5 & 8\\\\\n8 \\ 0& 6 & 6 \\ 9\\\\\n9 \\ 8 \\ 5 & 7 & 0 \\ 5 \\ 6 \\ 6 \\ 6 \\ 8 \\ 8\\\\\n8 \\ 7 \\ 6 \\ 4 \\ 1 & 8 & 6 \\ 6 \\\\\n8 \\ 6 \\ 2 \\ 2 \\ 1 & 9 & 5 \\ 8 \\ 8\n\\end{tabular}\n\\end{center}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "填空题", "genre": "填空题",
@ -311767,8 +311767,8 @@
"content": "已知集合$A=\\{1,2\\}$, $B=\\{2,3\\}$, 则$A \\cap B=$\\blank{50}.", "content": "已知集合$A=\\{1,2\\}$, $B=\\{2,3\\}$, 则$A \\cap B=$\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$\\{2\\}$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311786,8 +311786,8 @@
"content": "函数$y=\\log_2 \\dfrac{1+x}{1-x}$的定义域是\\blank{50}.", "content": "函数$y=\\log_2 \\dfrac{1+x}{1-x}$的定义域是\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$(-1,1)$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311805,8 +311805,8 @@
"content": "设复数$z=\\mathrm{i}(2-\\mathrm{i})$(其中$\\mathrm{i}$为虚数单位), 则$|z|=$\\blank{50}.", "content": "设复数$z=\\mathrm{i}(2-\\mathrm{i})$(其中$\\mathrm{i}$为虚数单位), 则$|z|=$\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$\\sqrt{5}$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311824,8 +311824,8 @@
"content": "设$x>1$, 则$x+\\dfrac 4{x-1}$的最小值是\\blank{50}.", "content": "设$x>1$, 则$x+\\dfrac 4{x-1}$的最小值是\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$5$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311843,8 +311843,8 @@
"content": "若指数函数$y=a^x$($a>0$, $a \\neq 1$)在$[1, 2]$上的最大值与最小值之和等于$12$, 则实数$a=$\\blank{50}.", "content": "若指数函数$y=a^x$($a>0$, $a \\neq 1$)在$[1, 2]$上的最大值与最小值之和等于$12$, 则实数$a=$\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$3$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311862,8 +311862,8 @@
"content": "两个篮球运动员罚球时的命中概率分别是$0.6$和$0.5$, 两人各投一次, 则他们同时命中的概率是\\blank{50}.", "content": "两个篮球运动员罚球时的命中概率分别是$0.6$和$0.5$, 两人各投一次, 则他们同时命中的概率是\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$0.3$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311881,8 +311881,8 @@
"content": "将圆锥的侧面展开后得到一个半径为$2$的半圆, 则此圆锥的体积为\\blank{50}.", "content": "将圆锥的侧面展开后得到一个半径为$2$的半圆, 则此圆锥的体积为\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$\\dfrac{\\sqrt{3}}3\\pi$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311900,8 +311900,8 @@
"content": "已知平面向量$\\overrightarrow a$、$\\overrightarrow b$满足$|\\overrightarrow a|=3$, $|\\overrightarrow b|=4$, 则$2 \\overrightarrow a+\\overrightarrow b$在$\\overrightarrow a$方向上的数量投影的最小值是\\blank{50}.", "content": "已知平面向量$\\overrightarrow a$、$\\overrightarrow b$满足$|\\overrightarrow a|=3$, $|\\overrightarrow b|=4$, 则$2 \\overrightarrow a+\\overrightarrow b$在$\\overrightarrow a$方向上的数量投影的最小值是\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$2$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311919,8 +311919,8 @@
"content": "从$5$名志愿者中选出$4$名分别参加测温、扫码、做核酸和信息登记的工作 (每项$1$人), 其中甲不参加测温的分配方案有\\blank{50}种. (结果用数值表示)", "content": "从$5$名志愿者中选出$4$名分别参加测温、扫码、做核酸和信息登记的工作 (每项$1$人), 其中甲不参加测温的分配方案有\\blank{50}种. (结果用数值表示)",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$96$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311938,8 +311938,8 @@
"content": "双曲线$C$的左、右焦点分别为$F_1$、$F_2$, 点$A$在$y$轴上. 双曲线$C$与线段$AF_1$交于点$P$, 与线段$AF_2$交于点$Q$, 直线$AF_1$平行于双曲线$C$的渐近线, 且$|AP|:|PQ|=5: 6$, 则双曲线$C$的离心率为\\blank{50}.", "content": "双曲线$C$的左、右焦点分别为$F_1$、$F_2$, 点$A$在$y$轴上. 双曲线$C$与线段$AF_1$交于点$P$, 与线段$AF_2$交于点$Q$, 直线$AF_1$平行于双曲线$C$的渐近线, 且$|AP|:|PQ|=5: 6$, 则双曲线$C$的离心率为\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$\\dfrac 53$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311957,8 +311957,8 @@
"content": "某人去公园郊游, 在草地上搭建了如图所示的简易遮阳篷$ABC$, 遮阳篷是一个直角边长为$6$的等腰直角三角形, 斜边$AB$朝南北方向固定在地上, 正西方向射出的太阳光线与地面成$30^{\\circ}$角, 则当遮阳篷$ABC$与地面所成的角大小为\\blank{50}时, 所遮阴影面$ABC$面积达到最大.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,2) node [below] {$A$} coordinate (A);\n\\draw (0,0,-2) node [right] {$B$} coordinate (B);\n\\draw ({2*sqrt(3)},0,0) node [right] {$C'$} coordinate (C');\n\\draw (0,2,0) node [above] {$C$} coordinate (C);\n\\fill [pattern = north east lines] (A) -- (B) -- (C) -- cycle;\n\\draw (A) -- (C) -- (C') -- cycle;\n\\draw [dashed] (A) -- (B) -- (C) (B) -- (C');\n\\end{tikzpicture}\n\\end{center}", "content": "某人去公园郊游, 在草地上搭建了如图所示的简易遮阳篷$ABC$, 遮阳篷是一个直角边长为$6$的等腰直角三角形, 斜边$AB$朝南北方向固定在地上, 正西方向射出的太阳光线与地面成$30^{\\circ}$角, 则当遮阳篷$ABC$与地面所成的角大小为\\blank{50}时, 所遮阴影面$ABC$面积达到最大.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,2) node [below] {$A$} coordinate (A);\n\\draw (0,0,-2) node [right] {$B$} coordinate (B);\n\\draw ({2*sqrt(3)},0,0) node [right] {$C'$} coordinate (C');\n\\draw (0,2,0) node [above] {$C$} coordinate (C);\n\\fill [pattern = north east lines] (A) -- (B) -- (C) -- cycle;\n\\draw (A) -- (C) -- (C') -- cycle;\n\\draw [dashed] (A) -- (B) -- (C) (B) -- (C');\n\\end{tikzpicture}\n\\end{center}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$60^\\circ$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311976,8 +311976,8 @@
"content": "对于正整数$n$, 设$x_n$是关于$x$的方程$n x^3+2 x-n=0$的实数根, 记$a_n=[(n+1) x_n]$($n \\geq 2$), 其中$[x]$表示不超过$x$的最大整数, 则$\\dfrac 1{1012}(a_2+a_3+a_4+\\cdots+a_{2022})=$\\blank{50}.", "content": "对于正整数$n$, 设$x_n$是关于$x$的方程$n x^3+2 x-n=0$的实数根, 记$a_n=[(n+1) x_n]$($n \\geq 2$), 其中$[x]$表示不超过$x$的最大整数, 则$\\dfrac 1{1012}(a_2+a_3+a_4+\\cdots+a_{2022})=$\\blank{50}.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "填空题",
"ans": "", "ans": "$2021$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -311995,8 +311995,8 @@
"content": "已知$a , b$都是自然数, 则``$a+b$是偶数''是``$a , b$都是偶数''的\\bracket{20}条件.\n\\fourch{充分而不必要}{必要而不充分}{充要}{既不充分也不必要}", "content": "已知$a , b$都是自然数, 则``$a+b$是偶数''是``$a , b$都是偶数''的\\bracket{20}条件.\n\\fourch{充分而不必要}{必要而不充分}{充要}{既不充分也不必要}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "选择题",
"ans": "", "ans": "B",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312014,8 +312014,8 @@
"content": "某高中共有学生$1200$人, 其中高一、高二、高三的学生人数比为$6: 5: 4$, 现用分层抽样的方法从该校所有学生中抽取一个容量为$60$的样本, 则高三年级应该抽取\\bracket{20}人.\n\\fourch{$16$}{$18$}{$20$}{$24$}", "content": "某高中共有学生$1200$人, 其中高一、高二、高三的学生人数比为$6: 5: 4$, 现用分层抽样的方法从该校所有学生中抽取一个容量为$60$的样本, 则高三年级应该抽取\\bracket{20}人.\n\\fourch{$16$}{$18$}{$20$}{$24$}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "选择题",
"ans": "", "ans": "A",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312033,8 +312033,8 @@
"content": "设$\\sin \\alpha+\\cos \\alpha=x$, 且$\\sin ^3 \\alpha+\\cos ^3 \\alpha=a_3 x^3+a_2 x^2+a_1 x+a_0$, 则$a_0+a_1+a_2+a_3=$\\bracket{20}.\n\\fourch{$-1$}{$\\dfrac 12$}{$1$}{$\\sqrt 2$}", "content": "设$\\sin \\alpha+\\cos \\alpha=x$, 且$\\sin ^3 \\alpha+\\cos ^3 \\alpha=a_3 x^3+a_2 x^2+a_1 x+a_0$, 则$a_0+a_1+a_2+a_3=$\\bracket{20}.\n\\fourch{$-1$}{$\\dfrac 12$}{$1$}{$\\sqrt 2$}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "选择题",
"ans": "", "ans": "C",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312052,8 +312052,8 @@
"content": "已知$O$为坐标原点, 点$A(1,1)$在抛物线$C: x^2=2 p y$($p>0$)上, 过点$B(0,-1)$的直线交抛物线$C$于$P$、$Q$两点: \\textcircled{1} 抛物线$C$的准线为$y=-\\dfrac 12$; \\textcircled{2} 直线$AB$与抛物线$C$相切; \\textcircled{3} $|OP|\\cdot|OQ|>|OA|^2$; \\textcircled{4} $|BP|\\cdot|BQ|=|BA|^2$, 以上结论中正确的是\\bracket{20}.\n\\fourch{\\textcircled{1}\\textcircled{2}}{\\textcircled{2}\\textcircled{3}}{\\textcircled{3}\\textcircled{4}}{\\textcircled{3}\\textcircled{4}}", "content": "已知$O$为坐标原点, 点$A(1,1)$在抛物线$C: x^2=2 p y$($p>0$)上, 过点$B(0,-1)$的直线交抛物线$C$于$P$、$Q$两点: \\textcircled{1} 抛物线$C$的准线为$y=-\\dfrac 12$; \\textcircled{2} 直线$AB$与抛物线$C$相切; \\textcircled{3} $|OP|\\cdot|OQ|>|OA|^2$; \\textcircled{4} $|BP|\\cdot|BQ|=|BA|^2$, 以上结论中正确的是\\bracket{20}.\n\\fourch{\\textcircled{1}\\textcircled{2}}{\\textcircled{2}\\textcircled{3}}{\\textcircled{3}\\textcircled{4}}{\\textcircled{3}\\textcircled{4}}",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "选择题",
"ans": "", "ans": "B",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312071,8 +312071,8 @@
"content": "已知函数$f(x)=\\sin 2 x+\\sqrt 3 \\cos 2 x$, $x \\in \\mathbf{R}$.\\\\\n(1) 求函数$f(x)$的单调增区间;\\\\\n(2) 在锐角$\\triangle ABC$中, 角$A$、$B$、$C$的对边分别为$a$、$b$、$c$, 当$f(A)=0$, $b=1$, 且三角形$ABC$的面积为$\\sqrt 3$时, 求$a$.", "content": "已知函数$f(x)=\\sin 2 x+\\sqrt 3 \\cos 2 x$, $x \\in \\mathbf{R}$.\\\\\n(1) 求函数$f(x)$的单调增区间;\\\\\n(2) 在锐角$\\triangle ABC$中, 角$A$、$B$、$C$的对边分别为$a$、$b$、$c$, 当$f(A)=0$, $b=1$, 且三角形$ABC$的面积为$\\sqrt 3$时, 求$a$.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "解答题",
"ans": "", "ans": "(1) $[k\\pi-\\dfrac{5\\pi}{12},k\\pi+\\dfrac\\pi{12}]$, $k\\in \\mathbf{Z}$; (2) $\\sqrt{13}$或$\\sqrt{61}$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312083,15 +312083,15 @@
"same": [], "same": [],
"related": [], "related": [],
"remark": "", "remark": "",
"space": "" "space": "12ex"
}, },
"012672": { "012672": {
"id": "012672", "id": "012672",
"content": "已知数列$\\{a_n\\}$满足$a_1=1$, $a_n=3 a_{n-1}+4$($n \\geq 2$).\\\\\n(1) 求证: 数列$\\{a_n+2\\}$是等比数列;\\\\\n(2) 求数列$\\{a_n\\}$的通项公式;\\\\\n(3) 写出$\\displaystyle\\sum_{i=1}^5 a_{2 i-1}$的具体展开式, 并求其值.", "content": "已知数列$\\{a_n\\}$满足$a_1=1$, $a_n=3 a_{n-1}+4$($n \\geq 2$).\\\\\n(1) 求证: 数列$\\{a_n+2\\}$是等比数列;\\\\\n(2) 求数列$\\{a_n\\}$的通项公式;\\\\\n(3) 写出$\\displaystyle\\sum_{i=1}^5 a_{2 i-1}$的具体展开式, 并求其值.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "解答题",
"ans": "", "ans": "(1) 证明略; (2) $a_n=3^n-2$; (3) $a_1+a_3+a_5+a_7+a_9=22133$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312102,15 +312102,15 @@
"same": [], "same": [],
"related": [], "related": [],
"remark": "", "remark": "",
"space": "" "space": "12ex"
}, },
"012673": { "012673": {
"id": "012673", "id": "012673",
"content": "如图, 棱长为$2$的正方体$ABCD-A_1B_1C_1D_1$中, $M$、$N$、$P$分别是$C_1D_1$、$C_1C$、$A_1A$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\filldraw ($(C1)!0.5!(D1)$) circle (0.03) node [above] {$M$} coordinate (M);\n\\filldraw ($(A)!0.5!(A1)$) circle (0.03) node [left] {$P$} coordinate (P);\n\\filldraw ($(C)!0.5!(C1)$) circle (0.03) node [right] {$N$} coordinate (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 证明: $M$、$N$、$A_1$、$B$四点共面;\\\\\n(2) 求异面直线$PD_1$与$MN$所成角的大小; (结果用反三角函数值表示)\\\\\n(3) 求三棱锥$P-MNB$的体积.", "content": "如图, 棱长为$2$的正方体$ABCD-A_1B_1C_1D_1$中, $M$、$N$、$P$分别是$C_1D_1$、$C_1C$、$A_1A$的中点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\filldraw ($(C1)!0.5!(D1)$) circle (0.03) node [above] {$M$} coordinate (M);\n\\filldraw ($(A)!0.5!(A1)$) circle (0.03) node [left] {$P$} coordinate (P);\n\\filldraw ($(C)!0.5!(C1)$) circle (0.03) node [right] {$N$} coordinate (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 证明: $M$、$N$、$A_1$、$B$四点共面;\\\\\n(2) 求异面直线$PD_1$与$MN$所成角的大小; (结果用反三角函数值表示)\\\\\n(3) 求三棱锥$P-MNB$的体积.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "解答题",
"ans": "", "ans": "(1) 证明略; (2) $\\arccos \\dfrac{\\sqrt{10}}{10}$; (3) $\\dfrac 13$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312121,15 +312121,15 @@
"same": [], "same": [],
"related": [], "related": [],
"remark": "", "remark": "",
"space": "" "space": "12ex"
}, },
"012674": { "012674": {
"id": "012674", "id": "012674",
"content": "已知椭圆$C: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$), $P(1,3)$, $Q(3,1)$, $M(-3,1)$, $N(0,2)$这四点中恰有三点在椭圆$C$上.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.7]\n\\draw [->] (-3.5,0) -- (3.5,0) node [below] {$x$};\n\\draw [->] (0,-2.5) -- (0,3.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\filldraw (1,3) circle (0.03) node [right] {$P$} coordinate (P);\n\\filldraw (3,1) circle (0.03) node [right] {$Q$} coordinate (Q);\n\\filldraw (-3,1) circle (0.03) node [right] {$M$} coordinate (M);\n\\filldraw (0,2) circle (0.03) node [right] {$N$} coordinate (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 求椭圆$C$的方程;\\\\\n(2) 点$E$是椭圆$C$上的一个动点, 求$\\triangle EMN$面积的最大值;\\\\\n(3) 过$R(0,1)$的直线$l$交椭圆$C$于$A$、$B$两点, 设直线$l$的斜率$k>0$, 在$x$轴上是否存在一点$D(m, 0)$, 使得以$DA$、$DB$为邻边的平行四边形为菱形? 若存在, 求实数$m$的取值范围; 若不存在, 请说明理由.", "content": "已知椭圆$C: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$), $P(1,3)$, $Q(3,1)$, $M(-3,1)$, $N(0,2)$这四点中恰有三点在椭圆$C$上.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.7]\n\\draw [->] (-3.5,0) -- (3.5,0) node [below] {$x$};\n\\draw [->] (0,-2.5) -- (0,3.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\filldraw (1,3) circle (0.03) node [right] {$P$} coordinate (P);\n\\filldraw (3,1) circle (0.03) node [right] {$Q$} coordinate (Q);\n\\filldraw (-3,1) circle (0.03) node [right] {$M$} coordinate (M);\n\\filldraw (0,2) circle (0.03) node [right] {$N$} coordinate (N);\n\\end{tikzpicture}\n\\end{center}\n(1) 求椭圆$C$的方程;\\\\\n(2) 点$E$是椭圆$C$上的一个动点, 求$\\triangle EMN$面积的最大值;\\\\\n(3) 过$R(0,1)$的直线$l$交椭圆$C$于$A$、$B$两点, 设直线$l$的斜率$k>0$, 在$x$轴上是否存在一点$D(m, 0)$, 使得以$DA$、$DB$为邻边的平行四边形为菱形? 若存在, 求实数$m$的取值范围; 若不存在, 请说明理由.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "解答题",
"ans": "", "ans": "(1) $\\dfrac{x^2}{12}+\\dfrac{y^2}4=1$; (2) $3+2\\sqrt{3}$; (3) 存在, $m$的取值范围为$[-\\dfrac{\\sqrt{3}}3,0)$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312140,15 +312140,15 @@
"same": [], "same": [],
"related": [], "related": [],
"remark": "", "remark": "",
"space": "" "space": "12ex"
}, },
"012675": { "012675": {
"id": "012675", "id": "012675",
"content": "已知函数$f(x)=x^2-a x-a$, $a \\in \\mathbf{R}$.\\\\\n(1) 判断函数$f(x)$的奇偶性;\\\\ \n(2) 若函数$F(x)=x \\cdot f(x)$在$x=1$处有极值, 且关于$x$的方程$F(x)=m$有 $3$个不同的实根, 求实数$m$的取值范围;\\\\\n(3) 记$g(x)=-\\mathrm{e}^x$($\\mathrm{e}$是自然对数的底数). 若对任意$x_1$、$x_2 \\in[0, \\mathrm{e}]$且$x_1>x_2$时, 均有$|f(x_1)-f(x_2)|<|g(x_1)-g(x_2)|$成立, 求实数$a$的取值范围.", "content": "已知函数$f(x)=x^2-a x-a$, $a \\in \\mathbf{R}$.\\\\\n(1) 判断函数$f(x)$的奇偶性;\\\\ \n(2) 若函数$F(x)=x \\cdot f(x)$在$x=1$处有极值, 且关于$x$的方程$F(x)=m$有 $3$个不同的实根, 求实数$m$的取值范围;\\\\\n(3) 记$g(x)=-\\mathrm{e}^x$($\\mathrm{e}$是自然对数的底数). 若对任意$x_1$、$x_2 \\in[0, \\mathrm{e}]$且$x_1>x_2$时, 均有$|f(x_1)-f(x_2)|<|g(x_1)-g(x_2)|$成立, 求实数$a$的取值范围.",
"objs": [], "objs": [],
"tags": [], "tags": [],
"genre": "", "genre": "解答题",
"ans": "", "ans": "(1) 当$a=0$时, $f(x)$是偶函数; 当$a\\ne 0$时, $f(x)$既不是奇函数又不是偶函数; (2) $(-1,\\dfrac 5{27})$; (3) $[2\\ln 2-2,1]$",
"solution": "", "solution": "",
"duration": -1, "duration": -1,
"usages": [], "usages": [],
@ -312159,7 +312159,7 @@
"same": [], "same": [],
"related": [], "related": [],
"remark": "", "remark": "",
"space": "" "space": "12ex"
}, },
"020001": { "020001": {
"id": "020001", "id": "020001",