收录W20240601
This commit is contained in:
parent
fff221a547
commit
dd96077bc7
|
|
@ -376,3 +376,6 @@
|
|||
20240225-213222 2025届高二下学期校本作业-概率初步续
|
||||
004572:004588,041047,004590:004595,041048,004597:004599,041049,004601:004618,019240,014818,010903,030519,030534,030517:030518,019245,030535,030538,030540,030552
|
||||
|
||||
20240227-195629 2024届高三下学期周末卷01
|
||||
019810,015186:015191,032089:032093,015197:015199,032094:032095,015201:015202,015204,032096
|
||||
|
||||
|
|
|
|||
|
|
@ -422711,7 +422711,9 @@
|
|||
"edit": [
|
||||
"20230412\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"same": [
|
||||
"032094"
|
||||
],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
|
|
@ -734400,6 +734402,168 @@
|
|||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"032089": {
|
||||
"id": "032089",
|
||||
"content": "设不等式 $a \\leq|x-5|+|x-3|$ 对所有实数 $x$ 恒成立, 则实数 $a$ 的取值范围为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032090": {
|
||||
"id": "032090",
|
||||
"content": "如图, 在四棱锥 $P-ABCD$ 中, $PA \\perp$ 平面 $ABCD$,底面 $ABCD$ 是矩形, $|AP|=|AB|=2$, $|AD|=4$, $E$ 是 $BC$ 上的点, 直线 $PB$ 与平面 $PDE$ 所成的角是 $\\arcsin \\dfrac{\\sqrt{3}}{6}$, 则 $BE$ 的长为\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (4,0,0) node [right] {$D$} coordinate (D);\n\\draw (4,0,2) node [below] {$C$} coordinate (C);\n\\draw (0,0,2) node [below] {$B$} coordinate (B);\n\\draw (0,2,0) node [above] {$P$} coordinate (P);\n\\draw ($(B)!0.5!(C)$) node [below] {$E$} coordinate (E);\n\\draw (P)--(B)--(C)--(D)--cycle(P)--(C);\n\\draw [dashed] (B)--(A)--(D)(P)--(A);\n\\draw (P)--(E);\n\\draw [dashed] (E)--(D);\n\\end{tikzpicture}\n\\end{center}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032091": {
|
||||
"id": "032091",
|
||||
"content": "不等式 $\\log _2 x+\\dfrac{x}{2}<4$ 的解集为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032092": {
|
||||
"id": "032092",
|
||||
"content": "在国家开发西部的号召下, 某西部企业得到了一笔 400 万元的无息贷款用做设备更新. 据预测, 该企业设备更新后, 第 1 个月收入为 20 万元, 在接下来的 5 个月中, 每月收入都比上个月增长 $20 \\%$, 从第 7 个月开始, 每个月的收入都比前一个月增加 2 万元. 则从新设备使用开始计算, 该企业用所得收入偿还 400 万无息贷款只需\\blank{50}个月. (结果取整)",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032093": {
|
||||
"id": "032093",
|
||||
"content": "记 $f(x)=\\ln x+x^2-2 k x+k^2$, 若存在实数 $a$、$b$, 满足 $\\dfrac{1}{2}\\leq a<b \\leq 2$, 使得函数 $y=f(x)$ 在区间 $[a, b]$ 上是严格增函数, 则实数 $k$ 的取值范围是\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032094": {
|
||||
"id": "032094",
|
||||
"content": "记点 $P$ 到图形 $C$ 上每一个点的距离的最小值称为点 $P$ 到图形 $C$ 的距离, 那么平面内到定圆 $C$ 的距离与到定点 $A$ 的距离相等的点的轨迹不可能是\\bracket{20}.\n\\fourch{直线}{圆}{椭圆}{双曲线的一支}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [
|
||||
"014930"
|
||||
],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"032095": {
|
||||
"id": "032095",
|
||||
"content": "记 $f(x)=\\sin ^2 x-\\cos ^2 x+2 \\sqrt{3}\\sin x \\cos x+\\lambda$($x \\in \\mathbf{R}$), 其中 $\\lambda$ 为实常数.\\\\\n(1) 求函数 $y=f(x)$ 的最小正周期;\\\\\n(2) 若函数 $y=f(x)$ 的图像经过点 $(\\dfrac{\\pi}{2}, 0)$, 求其在区间 $[0, \\dfrac{2}{3}\\pi]$ 上的最大值和最小值.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"032096": {
|
||||
"id": "032096",
|
||||
"content": "如果函数 $y=f(x)$ 满足以下两个条件``(1) 对任意的 $x \\in(0,1)$, 总有 $f(x)>0$;\\\\\n(2) 当 $x_1>0$, $x_2>0$, $x_1+x_2<1$ 时, 总有 $f(x_1+x_2)<f(x_1)+f(x_2)$ 成立'', 我们就称 $y=f(x)$ 为 $L$ 型函数:\\\\\n(1) 记 $g(x)=x^2+\\dfrac{1}{2}$, 求证: $y=g(x)$ 为 $L$ 型函数;\\\\\n(2) 设 $b \\in \\mathbf{R}$, 记 $p(x)=\\ln (x+b)$, 若 $y=p(x)$ 是 $L$ 型函数, 求 $b$ 的取值范围;\\\\\n(3) 是否存在 $L$ 型函数 $y=r(x)$ 满足: 对于任意的 $m \\in(0,4)$, 都存在 $x_0 \\in(0,1)$, 使得等式 $r(x_0)=m$ 成立? 请说明理由.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240227\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"040001": {
|
||||
"id": "040001",
|
||||
"content": "参数方程$\\begin{cases}x=3 t^2+4, \\\\ y=t^2-2\\end{cases}$($0 \\leq t \\leq 3$)所表示的曲线是\\bracket{20}.\n\\fourch{一支双曲线}{线段}{圆弧}{射线}",
|
||||
|
|
|
|||
Reference in New Issue